Topological implications in quantum tomography

Michael Wolf
NBI Copenhagen
TU Munich
This talk is currently not available in your country.
Topological implications in quantum tomography

David Reeb
NBI Copenhagen
TU Munich
Question: How many measurements/outcomes are necessary to identify a quantum state ρ under prior information $\rho \in M$?

Setup:
• assume: prior info restricts to manifold M of dimensionality d_M
• measure (i) m expectation values or (ii) POVM with $m + 1$ outcomes:
 \[h : M \to \mathbb{R}^m, \quad h(\rho)_i = \text{tr}[\rho A_i] \]

Goal:
• find minimal m s.t. h is injective (info complete for M)

Example: $M = \text{pure states in} \ C^d : \quad d_M = 2d - 2 \leq m \leq d^2 - 1$

[Flammia et al.]: $2d - 1 \leq m$
[Gross et al.]: efficient probabilistic scheme with $m = O(d(\log d)^2)$
Topological obstructions

Proposition: $h : M \rightarrow \mathbb{R}^m$, $h(\rho)_i = \text{tr}[\rho^{\otimes n} A_i]$

is info-complete for M iff it is a topological embedding

Recipe for lower bounds on m:

show that topological properties of M have no realization in too small dimensions m

Powerful toolboxes: homotopy, cohomology, etc.
Example 1: $M = \text{pure qubit states}$
$d_M = 2$

Observation: map from Bloch-SPHERE to \mathbb{R}^2 either discontinuous or not injective
i.e. $m > d_M$.

Corollary: $h : M \to \mathbb{R}^m$, $h(\rho)_i = \text{tr}[\rho^\otimes n A_i]$

is info-complete for M iff it is so for all qubit states.

Borsuk-Ulam: If $m = 2$ then there exist two orthogonal states
which cannot be distinguished.
Example 2: \(M = \) pure states in \(\mathbb{C}^3 \) with \textbf{real} amplitudes
\[|\psi\rangle = (x, y, z) \in \mathbb{R}^3 \]
\[d_M = 2 \]

Observation: \(M \simeq \) real projective plane \(\mathbb{RP}^2 \)

Corollary: \(h : M \to \mathbb{R}^m, \quad h(\rho)_i = \text{tr}[\rho \otimes A_i] \)
is info-complete for \(M \) only if \(m \geq 4 \). \(m = 4 \) can be realized for \(n = 1 \).

proof idea: • non-orientability of \(\mathbb{RP}^2 \) implies self-intersections in \(\mathbb{R}^3 \)
• \((x, y, z) \mapsto (yz, xz, xy, x^2 - y^2)\) leads to \textbf{topological embedding}
Obstructions from differential topology

Proposition: With some assumptions on M, $h : M \to \mathbb{R}^m$, $h(\rho)_i = \text{tr}[\rho A_i]$ is info-complete for M iff it is an embedding in the category of differential topology.

Assumptions: M is smooth submanifold
- Union of tangent spaces is contained in \textit{`difference space`} $\{X | X = \lambda(M_1 - M_2), M_i \in M, \lambda > 0\}$

Lemma: This holds for $M = \mathbb{CP}^{d-1}, G(r, d-r)$

Powerful toolboxes for lower bounds on m:
- Atiyah Hirzebruch index theorem
- Chern’s results on dual Stiefel-Whitney classes
Pure states in \mathbb{C}^d

Proposition: The min m for which $h : M \to \mathbb{R}^m$, $h(\rho)_i = \text{tr}[\rho A_i]$ can be info-complete satisfies

$$2d_M - 2\alpha < m \leq 2d_M - \alpha$$

where $\alpha = \text{number of 1's in binary expansion of } d - 1$

note: $\alpha \leq \log_2 d$, $d_M = 2d - 2$
Proposition: The min m for which $h : M \rightarrow \mathbb{R}^m$, $h(\rho)_i = \text{tr}[\rho A_i]$ can be info-complete satisfies

$$2d_M - 2\alpha < m \leq 2d_M - \alpha$$

where $\alpha = \text{number of 1's in binary expansion of } d - 1$

note: $\alpha \leq \log_2 d$, $d_M = 2d - 2$

Remarks: • Analogous result for states with rank constraint (via Grassmannians)
In particular $m \leq 2d_M - 1$, $d_M = 2r(d - r)$
• Upper bounds via explicitly constructed observables
General upper bound

Let M be a set with Minkowski dimension

$$D_M := \limsup_{\epsilon \to 0} \frac{\log N_\epsilon}{\log(1/\epsilon)}, \quad N_\epsilon = \min \text{ number of covering } \epsilon \text{ balls}$$

(note: $D_M = d_M$ for smooth manifolds)

Proposition: Almost every $h : M \to \mathbb{R}^m$, $h(\rho)_i = \text{tr}[\rho A_i]$ is info-complete for M if $m > 2D_M$
Conclusion

• Topological properties of prior information are relevant for min m.

• m can exceed the number of parameters necessary for description by a factor of two but not more.

• Results beat e.g. compressed sensing. However, we optimized m irrespective of classical post-processing, robustness and verifyability of assumptions.

joint work of: Luca Mazzarella
 Teiko Heinosaari
 Michael Wolf

presentation: David Reeb

on arXiv soon …
Job announcement

where? TU Munich
what? postdocs & PhD’s in QIT
when? from March on ...
contact: Michael Wolf (wolf.qit@gmail.com)