Near-Optimal and Explicit Bell Inequality Violations

Harry Buhrman, Oded Regev, Giannicola Scarpa, Ronald de Wolf

January 2011

QIP 2011
Table of Contents

1. Introduction
2. The Hidden Matching game
3. The Khot-Vishnoi game
4. Conclusions
Local realism?

- Classical physics:
 - **Locality**: no faster than light influences.
 - **Realism**: values are determined before measurement.

- **EPR’35**: Quantum physics seems to violate local realism. Is it wrong or incomplete?

- **Bell’64**: Every local realistic theory must satisfy certain constraints (Bell Inequality).

- Experiments suggest that nature violates Bell Inequalities!

We study **quantitatively** how large the deviation from classical predictions can be.
Local realism?

- **Classical physics:**
 - **Locality:** no faster than light influences.
 - **Realism:** values are determined before measurement.

- \([EPR’35]\): Quantum physics seems to violate local realism. Is it wrong or incomplete?

- \([Bell’64]\): Every local realistic theory must satisfy certain constraints (Bell Inequality).

- Experiments suggest that nature violates Bell Inequalities!

We study **quantitatively** how large the deviation from classical predictions can be.
Local realism?

- Classical physics:
 - **Locality**: no faster than light influences.
 - **Realism**: values are determined before measurement.

- [EPR’35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?

- [Bell’64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).

- Experiments suggest that nature violates Bell Inequalities!

We study **quantitatively** how large the deviation from classical predictions can be.
Local realism?

- Classical physics:
 - **Locality**: no faster than light influences.
 - **Realism**: values are determined before measurement.

- *[EPR’35]*: Quantum physics seems to violate local realism. Is it wrong or incomplete?
- *[Bell’64]*: Every local realistic theory must satisfy certain constraints (Bell Inequality).

Experiments suggest that nature *violates* Bell Inequalities!

We study **quantitatively** how large the deviation from classical predictions can be.
Local realism?

- Classical physics:
 - **Locality**: no faster than light influences.
 - **Realism**: values are determined before measurement.

- [*EPR’35*]: Quantum physics seems to violate local realism. Is it wrong or incomplete?

- [*Bell’64*]: Every local realistic theory must satisfy certain constraints (Bell Inequality).

- Experiments suggest that nature violates Bell Inequalities!

We study **quantitatively** how large the deviation from classical predictions can be.
Local realism?

- Classical physics:
 - **Locality**: no faster than light influences.
 - **Realism**: values are determined before measurement.

- **[EPR’35]**: Quantum physics seems to violate local realism. Is it wrong or incomplete?

- **[Bell’64]**: Every local realistic theory must satisfy certain constraints (Bell Inequality).

- Experiments suggest that nature violates Bell Inequalities!

We study **quantitatively** how large the deviation from classical predictions can be.
Local realism?

- Classical physics:
 - **Locality**: no faster than light influences.
 - **Realism**: values are determined before measurement.

- [EPR’35]: Quantum physics seems to violate local realism. Is it wrong or incomplete?

- [Bell’64]: Every local realistic theory must satisfy certain constraints (Bell Inequality).

- Experiments suggest that nature violates Bell Inequalities!

We study **quantitatively** how large the deviation from classical predictions can be.
Local realism?

- Classical physics:
 - **Locality**: no faster than light influences.
 - **Realism**: values are determined before measurement.

- [*EPR’35*]: Quantum physics seems to violate local realism. Is it wrong or incomplete?

- [*Bell’64*]: Every local realistic theory must satisfy certain constraints (Bell Inequality).

Experiments suggest that nature *violates* Bell Inequalities!

We study **quantitatively** how large the deviation from classical predictions can be.
Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
- Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.

Goal: maximize winning probability.

Classical strategies: functions $A(x), B(y)$.

- The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.

Quantum strategies: shared entangled state; for each x measurement $\{A^x_a\}$; for each y $\{B^y_b\}$.

- Entangled value $\omega^*(G)$.
- $\omega^*_n(G)$ using entangled state of local dimension $\leq n$.

- Space-like separated
Non-local games

\[\text{Alice receives } x \text{ and Bob receives } y, \text{ where } (x, y) \text{ are chosen from the distribution } \pi. \]

Alice outputs \(a \) and Bob outputs \(b \).

\[\text{A } \textit{predicate} \text{ specifies winning outputs.} \]

Goal: maximize winning probability.

- Classical strategies: functions \(A(x), B(y) \).
 - The **classical value** \(\omega(G) \) is the maximum winning probability over all classical strategies.

- Quantum strategies: shared entangled state; for each \(x \) measurement \(\{A^x_a\} \); for each \(y \) \(\{B^y_b\} \).
 - **Entangled value** \(\omega^*(G) \).
 - \(\omega^*_n(G) \) using entangled state of local dimension \(\leq n \).
Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
- Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.

Goal: maximize winning probability.

Classical strategies: functions $A(x), B(y)$.
- The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.

Quantum strategies: shared entangled state; for each x measurement $\{A_x^a\}$; for each y $\{B_y^b\}$.
- Entangled value $\omega^*(G)$.
- $\omega^*_n(G)$ using entangled state of local dimension $\leq n$.
Non-local games

Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.

Alice outputs a and Bob outputs b.

A predicate specifies winning outputs.

Goal: maximize winning probability.

Classical strategies: functions $A(x)$, $B(y)$.

- The classical value $\omega(G)$ is the maximum winning probability over all classical strategies.

Quantum strategies: shared entangled state; for each x measurement $\{A^x_a\}$; for each y $\{B^y_b\}$.

- Entangled value $\omega^*(G)$.
- $\omega^*_n(G)$ using entangled state of local dimension $\leq n$.

5 / 21
Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
- Alice outputs a and Bob outputs b.
- A *predicate* specifies winning outputs.

Goal: maximize winning probability.

- Classical strategies: functions $A(x)$, $B(y)$.
 - The *classical value* $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared *entangled* state; for each x measurement $\{A^x_a\}$; for each y $\{B^y_b\}$.
 - Entangled value $\omega^*(G)$.
 - $\omega^*_n(G)$ using entangled state of local dimension $\leq n$.
Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
- Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.

Goal: maximize winning probability.

- Classical strategies: functions $A(x), B(y)$.
 - The **classical value** $\omega(G)$ is the maximum winning probability over all classical strategies.

- Quantum strategies: shared entangled state; for each x measurement $\{A_x^a\}$; for each y $\{B_y^b\}$.
 - Entangled value $\omega^*(G')$.
 - $\omega^*_n(G')$ using entangled state of local dimension $\leq n$.
Non-local games

- Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.
- Alice outputs a and Bob outputs b.
- A predicate specifies winning outputs.

Goal: maximize winning probability.

- Classical strategies: functions $A(x), B(y)$.
 - The **classical value** $\omega(G)$ is the maximum winning probability over all classical strategies.
- Quantum strategies: shared entangled state; for each x measurement $\{A_x^a\}$; for each y $\{B_y^b\}$.
 - **Entangled value** $\omega^*(G)$.
 - $\omega^*_n(G)$ using entangled state of local dimension $\leq n$.

Space-like separated

x

y

\downarrow

\downarrow

a

b
Non-local games

Alice receives x and Bob receives y, where (x, y) are chosen from the distribution π.

Alice outputs a and Bob outputs b.

A predicate specifies winning outputs.

Goal: maximize winning probability.

Classical strategies: functions $A(x)$, $B(y)$.

The **classical value** $\omega(G)$ is the maximum winning probability over all classical strategies.

Quantum strategies: shared entangled state; for each x measurement $\{A^x_a\}$; for each y $\{B^y_b\}$.

Entangled value $\omega^*(G')$.

$\omega^*_n(G')$ using entangled state of local dimension $\leq n$.
Bell Inequality Violation

- **A Bell Inequality** is an upper bound on $\omega(G)$.
- **Violation**: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- **CHSH [Clauser, Horne, Shimony, Holt, 1969]**

 Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$

- We want **large violations**!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.
Bell Inequality Violation

- **A Bell Inequality** is an upper bound on $\omega(G)$.
- **Violation**: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]
 - Classic example where $\frac{\omega^*_2(\text{CHSH})}{\omega(\text{CHSH})} \sim 0.85 \div 0.75$
- We want *large violations*!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

Study violation as a function of:
- Local dimension of the entangled state.
- Number of outputs.
A Bell Inequality is an upper bound on $\omega(G)$.

Violation: $\omega^*(G)$ larger than $\omega(G)$.

Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.

CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where $\frac{\omega^*_2(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$

We want large violations!

Strong separation between quantum and classical worlds.
Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.
Bell Inequality Violation

- **A Bell Inequality** is an upper bound on $\omega(G)$.
- **Violation**: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- **CHSH** [Clauser, Horne, Shimony, Holt, 1969]
 - Classic example where $\frac{\omega^*_2(CHSH)}{\omega(CHSH)} \sim \frac{0.85}{0.75}$

We want large violations!

- Strong separation between quantum and classical worlds.
- Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.
A Bell Inequality is an upper bound on $\omega(G)$.

Violation: $\omega^*(G)$ larger than $\omega(G)$.

Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.

CHSH [Clauser, Horne, Shimony, Holt, 1969]

Classic example where $\frac{\omega^*_2(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$

We want large violations!

- Strong separation between quantum and classical worlds.
- Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.
Bell Inequality Violation

- A **Bell Inequality** is an upper bound on $\omega(G)$.
- **Violation**: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- **CHSH** [*Clauser, Horne, Shimony, Holt, 1969*]

 Classic example where $\frac{\omega^*_2(\text{CHSH})}{\omega(\text{CHSH})} \sim 0.85 \div 0.75$

- We want *large violations*!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.
Bell Inequality Violation

- A **Bell Inequality** is an upper bound on $\omega(G)$.
- **Violation**: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]
 - Classic example where $\frac{\omega_2^*(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want **large violations!**
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

Study violation as a function of:
- Local dimension of the entangled state.
- Number of outputs.
Bell Inequality Violation

- **A Bell Inequality** is an upper bound on $\omega(G)$.
- **Violation**: $\omega^*(G)$ larger than $\omega(G)$.
 - Quantified by ratio $\frac{\omega^*(G)}{\omega(G)}$.
- CHSH [Clauser, Horne, Shimony, Holt, 1969]
 Classic example where $\frac{\omega^*_2(\text{CHSH})}{\omega(\text{CHSH})} \sim \frac{0.85}{0.75}$
- We want *large violations*!
 - Strong separation between quantum and classical worlds.
 - Typically easier to verify experimentally.

Study violation as a function of:

- Local dimension of the entangled state.
- Number of outputs.
What is known?

How large can the ratio $\frac{\omega^*_n(G)}{\omega(G)}$ be?

Upper Bounds:
- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:
- [Folklore]: n^ϵ by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: $n^{\epsilon'}$ from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega_*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^ε by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. *(see next talk)*

 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega_n^*(G)}{\omega(G)}$ be?

Upper Bounds:
- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:
- [Folklore]: n^ε by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. *(see next talk)*
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega^*_n(G)}{\omega(G)}$ be?

Upper Bounds:
- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:
- [Folklore]: n^ε by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega^*(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^ε by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: n^ε' from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio \(\frac{\omega^*(G)}{\omega(G)} \) be?

Upper Bounds:
- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with \(n \)-dimensional entanglement: \(O(n) \).
- [Junge, Palazuelos ’10]: with \(k \) possible outputs: \(O(k) \).

Lower Bounds:
- [Folklore]: \(n^\varepsilon \) by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: \(n^{\varepsilon'} \) from Unique Games.
- [JPPVW’09]: \(\Omega(\sqrt{n}/(\log n)^2) \).
- [JP ’10]: \(\Omega(\sqrt{n}/\log n) \). *(see next talk)*
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega^*_n(G)}{\omega(G)}$ be?

Upper Bounds:

- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:

- [Folklore]: n^ε by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: n^ε' from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. *(see next talk)*
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio \(\frac{\omega^*_n(G)}{\omega(G)} \) be?

Upper Bounds:
- \([\text{Junge, Palazuelos, Pérez-García, Villanueva, Wolf '09}]: \) with \(n \)-dimensional entanglement: \(O(n) \).
- \([\text{Junge, Palazuelos '10}]: \) with \(k \) possible outputs: \(O(k) \).

Lower Bounds:
- \([\text{Folklore}]: \) \(n^\varepsilon \) by parallel repetition of “magic square”.
- \([\text{Kempe, Regev, Toner '08}]: \) \(n^{\varepsilon'} \) from Unique Games.
- \([\text{JPPVW'09}]: \) \(\Omega(\sqrt{n}/(\log n)^2) \).
- \([\text{JP '10}]: \) \(\Omega(\sqrt{n}/\log n) \). (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - \([\text{Regev '11}]: \) reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega^*_n(G)}{\omega(G)}$ be?

Upper Bounds:
- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:
- [Folklore]: n^c by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: n^c' from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega^*(G)}{\omega(G)}$ be?

Upper Bounds:
- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:
- [Folklore]: n^ε by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. *(see next talk)*
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega^*_n(G)}{\omega(G)}$ be?

Upper Bounds:
- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:
- [Folklore]: n^ε by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. *(see next talk)*
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
What is known?

How large can the ratio $\frac{\omega^*_n(G)}{\omega(G)}$ be?

Upper Bounds:
- [Junge, Palazuelos, Pérez-García, Villanueva, Wolf ’09]: with n-dimensional entanglement: $O(n)$.
- [Junge, Palazuelos ’10]: with k possible outputs: $O(k)$.

Lower Bounds:
- [Folklore]: n^{ε} by parallel repetition of “magic square”.
- [Kempe, Regev, Toner ’08]: $n^{\varepsilon'}$ from Unique Games.
- [JPPVW’09]: $\Omega(\sqrt{n}/(\log n)^2)$.
- [JP ’10]: $\Omega(\sqrt{n}/\log n)$. (see next talk)
 - Non-explicit; they use tools from operator space theory.
 - [Regev ’11] reproved this result with probabilistic tools.
Our results

Hidden Matching game

- Variant of “Hidden Matching” from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

Khot-Vishnoi game

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS’05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS’08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.
Our results

Hidden Matching game

- Variant of “Hidden Matching” from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].
 - n outputs; entanglement dimension n.
 - Violation of order $\sqrt{n}/\log n$.

Khot-Vishnoi game

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS’05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS’08]
 - n outputs; entanglement dimension n.
 - Violation of order $n/(\log n)^2$.
Our results

Hidden Matching game

- Variant of “Hidden Matching” from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

Khot-Vishnoi game

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS’05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS’08].
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.
Our results

Hidden Matching game
- Variant of “Hidden Matching” from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].
 - \(n \) outputs; entanglement dimension \(n \).
 - Violation of order \(\sqrt{n}/\log n \).

Khot-Vishnoi game
- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS’05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS’08]
 - \(n \) outputs; entanglement dimension \(n \).
 - Violation of order \(n/(\log n)^2 \).
Our results

Hidden Matching game

- Variant of “Hidden Matching” from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

Khot-Vishnoi game

- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS’05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS’08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.
Our results

Hidden Matching game
- Variant of “Hidden Matching” from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

Khot-Vishnoi game
- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS’05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS’08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.
Our results

Hidden Matching game
- Variant of “Hidden Matching” from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].
- n outputs; entanglement dimension n.
- Violation of order $\sqrt{n}/\log n$.

Khot-Vishnoi game
- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS’05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS’08]
- n outputs; entanglement dimension n.
- Violation of order $n/(\log n)^2$.
Our results

Hidden Matching game
- Variant of “Hidden Matching” from communication complexity. [Bar-Yossef, Jayram, Kerenidis, STOC’04].
- \(n \) outputs; entanglement dimension \(n \).
- Violation of order \(\sqrt{n} / \log n \).

Khot-Vishnoi game
- From an example of integrality gap for Unique Games [Khot, Vishnoi, FOCS’05] and a Quantum Rounding technique [Kempe, Regev, Toner, FOCS’08]
- \(n \) outputs; entanglement dimension \(n \).
- Violation of order \(n / (\log n)^2 \).
What are the inputs?

\[x \]

1

0

1

1
What are the inputs?

Perfect Matching

\[x \]

\[M \]

1 \(\rightarrow\) (1, 2)

0 \(\rightarrow\) (1, 2)

1 \(\rightarrow\) (3, 4)

1
Hidden Matching communication game

They win if $v = x_i \oplus x_j$.

Thm: Classical winning probability is at most $\frac{1}{2} + O\left(c \sqrt{n}\right)$.

$[BJK'04]$ proved this for $c = \sqrt{n}$.

[Image 2054x2092 to 2309x2219]
Hidden Matching communication game

The Hidden Matching game

They win if \(v = x_i \oplus x_j \).

Thm: Classical winning probability is at most \(\frac{1}{2} + O(c \sqrt{n}) \) (\([BJK'04]\) proved this for \(c = \sqrt{n} \)).

\[
x \in \{0, 1\}^n
\]

Perfect Matching

\[
M = (1, 2) \quad (3, 4)
\]
Hidden Matching communication game

\[x \in \{0, 1\}^n \]

Perfect Matching \(M \)

\((1, 2) \)

\((3, 4) \)

\(c \text{ bits} \)
Hidden Matching communication game

1
0
1
1

\[x \in \{0, 1\}^n \]

\[v \in \{0, 1\}, \ (i, j) \in M \]

\[\text{Perfect Matching} \]

\[(1, 2) \]

\[(3, 4) \]

\(c \text{ bits} \)
Hidden Matching communication game

They win if \(v = x_i \oplus x_j \).

\[x \in \{0, 1\}^n \]

\[M \]

\(v \in \{0, 1\}, \ (i, j) \in M \)

Perfect Matching

\((1, 2) \)

\((3, 4) \)
Hidden Matching communication game

They win if $v = x_i \oplus x_j$.

Thm: Classical winning probability is at most $\frac{1}{2} + O\left(\frac{c}{\sqrt{n}}\right)$ ([BJK’04] proved this for $c = \sqrt{n}$).
Hidden Matching non-local game

\[x \in \{0,1\}^n \]

\[a \in \{0,1\}^{\log n} \]

\[d \in \{0,1\}, (i,j) \in M \]

Winning probability \(1\) with \(n\)-dimensional entanglement.

Classical bound \(1/2 + O(\log n / \sqrt{n})\).

Violation: \(\Omega(\sqrt{n \log n})\).
Hidden Matching *non-local* game

They win if \((a \cdot (i \oplus j)) \oplus d = x_i \oplus x_j\).
Hidden Matching non-local game

\[x \in \{0, 1\}^n\]

\[a \in \{0, 1\}^{\log n}\]

\[d \in \{0, 1\}, (i, j) \in M\]

They win if \((a \cdot (i \oplus j)) \oplus d = x_i \oplus x_j\).

Winning probability 1 with \(n\)-dimensional entanglement.

Hidden Matching non-local game

They win if \((a \cdot (i \oplus j)) \oplus d = x_i \oplus x_j\).

Winning probability 1 with \(n\)-dimensional entanglement.

Classical bound \(\frac{1}{2} + O\left(\frac{\log n}{\sqrt{n}}\right)\).
Hidden Matching *non-local* game

They win if \((a \cdot (i \oplus j)) \oplus d = x_i \oplus x_j\).

Winning probability 1 with \(n\)-dimensional entanglement. Classical bound \(\frac{1}{2} + O\left(\frac{\log n}{\sqrt{n}}\right)\). **Violation:** \(\Omega\left(\frac{\sqrt{n}}{\log n}\right)\).
Table of Contents

1 Introduction

2 The Hidden Matching game

3 The Khot-Vishnoi game

4 Conclusions
Khot-Vishnoi game

$G(\{0, 1\}^n, \oplus)$
Khot-Vishnoi game

$G(\{0, 1\}^n, \oplus)$

Subgroup of all n Hadamard codewords
Khot-Vishnoi game

For each i, set $z_i = 1$ with probability $\eta \in [0, 1/2]$ (we will choose η later close to $1/2$).

$$G(\{0, 1\}^n, \oplus)$$

$$u \in \{0, 1\}^n$$

$$z \in \eta \{0, 1\}^n$$
Khot-Vishnoi game

\[G(\{0, 1\}^n, \oplus) \]

- \(u \in \{0, 1\}^n \)
- \(z \in \eta \{0, 1\}^n \)

Winning condition:

\[a \oplus b = z \]
Khot-Vishnoi game

The Khot-Vishnoi game

Winning condition: \(a \oplus b = z \)

\[G(\{0, 1\}^n, \oplus) \]

\[u \in \{0, 1\}^n \]

\[z \in \eta \{0, 1\}^n \]

\[x, y, H, u \oplus H, u \oplus z \oplus H \]
Khot-Vishnoi game

\[G(\{0, 1\}^n, \oplus) \]

\[u \in \{0, 1\}^n \]
\[z \in \{0, 1\}^n \]
Khot-Vishnoi game

Winning condition: \(a \oplus b = z \).
Khot-Vishnoi game

\[G(\{0, 1\}^n, \oplus) \]

\[u \in \{0, 1\}^n \]
\[z \in \eta \{0, 1\}^n \]

Winning condition: \(a \oplus b = z \).
Khot-Vishnoi - Quantum strategy

For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0, 1\}^n$, define $|v^a\rangle = ((-1)^{a_i} / \sqrt{n})_{i \in [n]}$.
 - For all a, b, $\langle v^a, v^b \rangle = 1 - 2d(a, b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n.

- Quantum strategy (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$.
 - Output the measurement outcome a.
Khot-Vishnoi - Quantum strategy

For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0, 1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all a, b, $\langle v^a, v^b \rangle = 1 - 2d(a, b)/n$
 - The vectors $\{v^a | a \in x\}$ are an orthonormal basis of \mathbb{R}^n.

- **Quantum strategy** (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a | a \in x\}$.
 - Output the measurement outcome a.
For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0, 1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
- For all a, b, $\langle v^a, v^b \rangle = 1 - 2d(a, b)/n$
- The vectors $\{v^a | a \in x\}$ are an orthonormal basis of \mathbb{R}^n.
- **Quantum strategy** (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a | a \in x\}$.
 - Output the measurement outcome a.
For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0, 1\}^n$, define $|v^a\rangle = \left((-1)^{a_i}/\sqrt{n}\right)_{i \in [n]}$.
- For all a, b, $\langle v^a, v^b \rangle = 1 - 2d(a, b)/n$
- The vectors $\{v^a | a \in x\}$ are an orthonormal basis of \mathbb{R}^n.

Quantum strategy (for Alice, similar for Bob):
- Shared maximally entangled state, local dimension n.
- On input x, projective measurement $\{v^a | a \in x\}$.
- Output the measurement outcome a.
Khot-Vishnoi - Quantum strategy

For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0, 1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i\in[n]}$.
 - For all a, b, $\langle v^a, v^b \rangle = 1 - 2d(a, b)/n$
 - The vectors $\{v^a | a \in x\}$ are an orthonormal basis of \mathbb{R}^n.

Quantum strategy (for Alice, similar for Bob):

- Shared maximally entangled state, local dimension n.
- On input x, projective measurement $\{v^a | a \in x\}$.
- Output the measurement outcome a.
Khot-Vishnoi - Quantum strategy

For any n and $\eta \in [0, 1/2]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0, 1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]}$.
 - For all a, b, $\langle v^a, v^b \rangle = 1 - 2d(a, b)/n$
 - The vectors $\{v^a \mid a \in x\}$ are an orthonormal basis of \mathbb{R}^n.

- **Quantum strategy** (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a \mid a \in x\}$.
 - Output the measurement outcome a.
For any \(n \) and \(\eta \in [0, 1/2] \), there exists a quantum strategy that wins with probability at least \((1 - 2\eta)^2 \).

- For \(a \in \{0, 1\}^n \), define \(|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i \in [n]} \).
 - For all \(a, b \), \(\langle v^a, v^b \rangle = 1 - 2d(a, b)/n \).
 - The vectors \(\{v^a \mid a \in x\} \) are an orthonormal basis of \(\mathbb{R}^n \).

Quantum strategy (for Alice, similar for Bob):

- Shared maximally entangled state, local dimension \(n \).
- On input \(x \), projective measurement \(\{v^a \mid a \in x\} \).
- Output the measurement outcome \(a \).
For any n and $\eta \in [0, \frac{1}{2}]$, there exists a quantum strategy that wins with probability at least $(1 - 2\eta)^2$.

- For $a \in \{0, 1\}^n$, define $|v^a\rangle = ((-1)^{a_i}/\sqrt{n})_{i\in[n]}$.
 - For all a, b, $\langle v^a, v^b \rangle = 1 - 2d(a, b)/n$
 - The vectors $\{v^a | a \in x\}$ are an orthonormal basis of \mathbb{R}^n.

- **Quantum strategy** (for Alice, similar for Bob):
 - Shared maximally entangled state, local dimension n.
 - On input x, projective measurement $\{v^a | a \in x\}$.
 - Output the measurement outcome a.
Winning probability is at least $(1 - 2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = (1 - \frac{2|z|}{n})^2.
 \]
- The overall winning probability is
 \[
 \mathbb{E}_z [(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z [1 - \frac{2|z|}{n}] \right)^2 = (1 - 2\eta)^2
 \]
Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.

- For inputs \(x, y\), winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = \left(1 - \frac{2|z|}{n}\right)^2.
 \]

- The overall winning probability is
 \[
 \mathbb{E}_z [(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z [1 - \frac{2|z|}{n}] \right)^2 = (1 - 2\eta)^2.
 \]
Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.

- For inputs \(x, y\), winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = (1 - \frac{2|z|}{n})^2.
 \]

- The overall winning probability is
 \[
 \mathbb{E}_z [(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z [1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2
 \]
Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.

- For inputs \(x, y\), winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = (1 - \frac{2|z|}{n})^2.
 \]

- The overall winning probability is
 \[
 \mathbb{E}_z [(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z [1 - \frac{2|z|}{n}] \right)^2 = (1 - 2\eta)^2
 \]
Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).

 Because of the maximally entangled state.

- For inputs \(x, y\), winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = (1 - \frac{2|z|}{n})^2.
 \]

- The overall winning probability is
 \[
 \mathbb{E}_z[(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z[1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2.
 \]
Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.

- For inputs \(x, y\), winning probability is

\[
\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = \left(1 - \frac{2|z|}{n}\right)^2.
\]

- The overall winning probability is

\[
E_z[(1 - \frac{2|z|}{n})^2] \geq \left(E_z[1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2.
\]
Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.

For inputs \(x, y\), winning probability is

\[
\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = (1 - \frac{2|z|}{n})^2.
\]

- The overall winning probability is

\[
E_z[(1 - \frac{2|z|}{n})^2] \geq \left(E_z[1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2
\]
Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.
- For inputs \(x, y\), winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a\oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = (1 - \frac{2|z|}{n})^2.
 \]
- The overall winning probability is
 \[
 \mathbb{E}_z [(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z [1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2.
 \]
Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.

- For inputs \(x, y\), winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a\oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = \left(1 - \frac{2|z|}{n}\right)^2.
 \]

- The overall winning probability is
 \[
 \mathbb{E}_z[(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z[1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2
 \]
Winning probability is at least $(1 - 2\eta)^2$.

- Probability to obtain a, b is $\frac{\langle v^a, v^b \rangle^2}{n}$.
- Because of the maximally entangled state.
- For inputs x, y, winning probability is
 $$\frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = (1 - \frac{2|z|}{n})^2.$$
- The overall winning probability is
 $$\mathbb{E}_z[(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z[1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2.$$
Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.

- For inputs \(x, y\), winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n} \right)^2 = \left(1 - \frac{2|z|}{n} \right)^2.
 \]

- The overall winning probability is
 \[
 \mathbb{E}_z \left[\left(1 - \frac{2|z|}{n} \right)^2 \right] \geq \left(\mathbb{E}_z \left[1 - \frac{2|z|}{n} \right] \right)^2 = \left(1 - 2\eta \right)^2.
 \]
Khot-Vishnoi - Quantum strategy (2)

Winning probability is at least \((1 - 2\eta)^2\).

- Probability to obtain \(a, b\) is \(\frac{\langle v^a, v^b \rangle^2}{n}\).
 - Because of the maximally entangled state.

- For inputs \(x, y\), winning probability is
 \[
 \frac{1}{n} \sum_{a \in x} \langle v^a, v^{a \oplus z} \rangle^2 = \frac{1}{n} \sum_{a \in x} \left(1 - \frac{2d(a, a \oplus z)}{n}\right)^2 = (1 - \frac{2|z|}{n})^2.
 \]

- The overall winning probability is
 \[
 \mathbb{E}_z[(1 - \frac{2|z|}{n})^2] \geq \left(\mathbb{E}_z[1 - \frac{2|z|}{n}]\right)^2 = (1 - 2\eta)^2
 \]
Khot-Vishnoi - Classical bound

Every classical strategy has winning probability \(\leq \frac{1}{n^{\eta/(1-\eta)}} \)

- Fix strategy. Functions \(A, B : \{0, 1\}^n \to \{0, 1\} \).
 - \(A(u) = 1 \iff \) Alice's output on coset \(u \oplus H \) is \(u \).
 - \(\mathbb{E}_u[A(u)] = 1/n \) (Alice chooses one element per coset).
 - Players win \(\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1 \).
- Winning probability is \(\mathbb{E}[\sum_{u,z} A(u \oplus h)B(u \oplus z \oplus h)] \)
 \[
 = \sum_{h \in H} \mathbb{E}[A(u \oplus h)B(u \oplus z \oplus h)] = n \mathbb{E}[A(u)B(u \oplus z)]
 \]
- We have that \(\mathbb{E}[A(u)B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}} \)
 (proof by hypercontractivity, next slide).
- Theorem follows by noting that \(n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}} \).
Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq \frac{1}{n^{\eta/(1-\eta)}}$

- **Fix strategy.** Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1$ \iff Alice’s output on coset $u \oplus H$ is u.
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\iff \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h) = 1$.

- Winning probability is $\mathbb{E}\left[\sum_{u,z} A(u \oplus h) B(u \oplus z \oplus h)\right]$

 $$= \sum_{h \in H} \mathbb{E}_u[A(u \oplus h) B(u \oplus z \oplus h)] = n \mathbb{E}_{u,z}[A(u) B(u \oplus z)]$$

- We have that $\mathbb{E}_{u,z}[A(u) B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}}$
 (proof by hypercontractivity, next slide).

- Theorem follows by noting that $n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}}$.
Khot-Vishnoi - Classical bound

Every classical strategy has winning probability \(\leq \frac{1}{n^{\eta/(1-\eta)}} \)

- **Fix strategy.** Functions \(A, B : \{0, 1\}^n \rightarrow \{0, 1\} \).
 - \(A(u) = 1 \iff \) Alice’s output on coset \(u \oplus H \) is \(u \).
 - \(\mathbb{E}_u[A(u)] = 1/n \) (Alice chooses one element per coset)
 - Players win \(\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1 \).

- Winning probability is \(\mathbb{E}[\sum_{u,z} A(u \oplus h)B(u \oplus z \oplus h)] \)

\[
= \sum_{h \in H} \mathbb{E}_{u,z}[A(u \oplus h)B(u \oplus z \oplus h)] = n \mathbb{E}_{u,z}[A(u)B(u \oplus z)]
\]

- We have that \(\mathbb{E}_{u,z}[A(u)B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}} \)
 (proof by hypercontractivity, next slide).
- Theorem follows by noting that \(n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}} \).
Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \to \{0, 1\}$.
 - $A(u) = 1 \iff$ Alice’s output on coset $u \oplus H$ is u.
 - $E_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1$.

- Winning probability is $E\left[\sum_{u,z} A(u \oplus h)B(u \oplus z \oplus h)\right]$

 $= \sum_{h \in H} E[A(u \oplus h)B(u \oplus z \oplus h)] = n \cdot E[A(u)B(u \oplus z)]$

- We have that $E[A(u)B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}}$
 (proof by hypercontractivity, next slide).

- Theorem follows by noting that $n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}}$.
Khot-Vishnoi - Classical bound

Every classical strategy has winning probability \(\leq \frac{1}{n^{\eta/(1-\eta)}} \)

- Fix strategy. Functions \(A, B : \{0, 1\}^n \rightarrow \{0, 1\} \).
 - \(A(u) = 1 \iff \) Alice’s output on coset \(u \oplus H \) is \(u \).
 - \(\mathbb{E}_u[A(u)] = 1/n \) (Alice chooses one element per coset)
 - Players win \(\iff \sum_{h \in H} A(u \oplus h) B(u \oplus z \oplus h) = 1 \).

- Winning probability is \(\mathbb{E} \left[\sum_{u, z} A(u \oplus h) B(u \oplus z \oplus h) \right] \)

\[
= \sum_{h \in H} \mathbb{E}_{u, z} \left[A(u \oplus h) B(u \oplus z \oplus h) \right] = n \mathbb{E}_{u, z} \left[A(u) B(u \oplus z) \right]
\]

- We have that \(\mathbb{E}_{u, z} \left[A(u) B(u \oplus z) \right] \leq \frac{1}{n^{1/(1-\eta)}} \)
 (proof by hypercontractivity, next slide).

- Theorem follows by noting that \(n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}} \).
Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \iff$ Alice’s output on coset $u \oplus H$ is u.
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset).
 - Players win $\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1$.

- Winning probability is $\mathbb{E} \left[\sum_{u, z} A(u \oplus h)B(u \oplus z \oplus h) \right]$

 $\quad = \sum_{h \in H} \mathbb{E} \left[A(u \oplus h)B(u \oplus z \oplus h) \right] = n \mathbb{E} \left[A(u)B(u \oplus z) \right]$

- We have that $\mathbb{E} \left[A(u)B(u \oplus z) \right] \leq \frac{1}{n^{1/(1-\eta)}}$

 (proof by hypercontractivity, next slide).

- Theorem follows by noting that $n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}}$.
Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \iff$ Alice’s output on coset $u \oplus H$ is u.
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1$.

- Winning probability is $\mathbb{E}\left[\sum_{u,z} A(u \oplus h)B(u \oplus z \oplus h) \right]$

 $$= \sum_{h \in H} \mathbb{E}_{u,z}[A(u \oplus h)B(u \oplus z \oplus h)] = n \mathbb{E}_{u,z}[A(u)B(u \oplus z)]$$

- We have that $\mathbb{E}_{u,z}[A(u)B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}}$
 (proof by hypercontractivity, next slide).

- Theorem follows by noting that $n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}}$.

Every classical strategy has winning probability $\leq \frac{1}{n^{\eta/(1-\eta)}}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \iff$ Alice’s output on coset $u \oplus H$ is u.
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset).
 - Players win $\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1$.

- Winning probability is $\mathbb{E}\left[\sum_{u,z,h \in H} A(u \oplus h)B(u \oplus z \oplus h)\right]$

 $$= \sum_{h \in H} \mathbb{E}_{u,z}[A(u \oplus h)B(u \oplus z \oplus h)] = n \mathbb{E}_{u,z}[A(u)B(u \oplus z)]$$

- We have that $\mathbb{E}_{u,z}[A(u)B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}}$
 (proof by hypercontractivity, next slide).

- Theorem follows by noting that $n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}}$.
Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \iff$ Alice’s output on coset $u \oplus H$ is u.
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1$.
- Winning probability is $\mathbb{E}\left[\sum_{u,z,h} A(u \oplus h)B(u \oplus z \oplus h) \right]$

 $$= \sum_{h \in H} \mathbb{E}_{u,z}[A(u \oplus h)B(u \oplus z \oplus h)] = n \mathbb{E}_{u,z}[A(u)B(u \oplus z)]$$

- We have that $\mathbb{E}_{u,z}[A(u)B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}}$

 (proof by hypercontractivity, next slide).
- Theorem follows by noting that $n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}}$.
Khot-Vishnoi - Classical bound

Every classical strategy has winning probability \(\leq \frac{1}{n^{\eta/(1-\eta)}} \)

- Fix strategy. Functions \(A, B : \{0, 1\}^n \rightarrow \{0, 1\} \).
 - \(A(u) = 1 \iff \text{Alice’s output on coset } u \oplus H \text{ is } u. \)
 - \(\mathbb{E}_u[A(u)] = \frac{1}{n} \) (Alice chooses one element per coset)
 - Players win \(\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1. \)
- Winning probability is \(\mathbb{E} \left[\sum_{u,z} A(u \oplus h)B(u \oplus z \oplus h) \right] \)
 \[= \sum_{h \in H} \mathbb{E} \left[A(u \oplus h)B(u \oplus z \oplus h) \right] = n \mathbb{E} \left[A(u)B(u \oplus z) \right] \]

- We have that \(\mathbb{E}_{u,z}[A(u)B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}} \) (proof by hypercontractivity, next slide).
- Theorem follows by noting that \(n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}} \).
Khot-Vishnoi - Classical bound

Every classical strategy has winning probability \(\leq \frac{1}{n^{\eta/(1-\eta)}} \)

- Fix strategy. Functions \(A, B : \{0, 1\}^n \rightarrow \{0, 1\} \).
 - \(A(u) = 1 \iff \text{Alice's output on coset } u \oplus H \text{ is } u. \)
 - \(\mathbb{E}_u[A(u)] = 1/n \) (Alice chooses one element per coset)
 - Players win \(\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1. \)

- Winning probability is \(\mathbb{E} \left[\sum_{u, z, h \in H} A(u \oplus h)B(u \oplus z \oplus h) \right] \)

\[
= \sum_{h \in H} \mathbb{E} \left[A(u \oplus h)B(u \oplus z \oplus h) \right] = n \mathbb{E} \left[A(u)B(u \oplus z) \right]
\]

- We have that \(\mathbb{E} \left[A(u)B(u \oplus z) \right] \leq \frac{1}{n^{1/(1-\eta)}} \)
 (proof by hypercontractivity, next slide).
- Theorem follows by noting that \(n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}} \).
Khot-Vishnoi - Classical bound

Every classical strategy has winning probability $\leq 1/n^{\eta/(1-\eta)}$

- Fix strategy. Functions $A, B : \{0, 1\}^n \rightarrow \{0, 1\}$.
 - $A(u) = 1 \iff$ Alice’s output on coset $u \oplus H$ is u.
 - $\mathbb{E}_u[A(u)] = 1/n$ (Alice chooses one element per coset)
 - Players win $\iff \sum_{h \in H} A(u \oplus h)B(u \oplus z \oplus h) = 1$.

- Winning probability is
 $$\mathbb{E}\left[\sum_{u,z} A(u \oplus h)B(u \oplus z \oplus h) \right]$$
 $$= \sum_{h \in H} \mathbb{E}\left[A(u \oplus h)B(u \oplus z \oplus h) \right]$$
 $$= n \mathbb{E}\left[A(u)B(u \oplus z) \right]$$

- We have that $\mathbb{E}_{u,z}[A(u)B(u \oplus z)] \leq \frac{1}{n^{1/(1-\eta)}}$
 (proof by hypercontractivity, next slide).
- Theorem follows by noting that $n \cdot \frac{1}{n^{1/(1-\eta)}} = \frac{1}{n^{\eta/(1-\eta)}}$.

17 / 21
Khot-Vishnoi - Classical bound (2)

\[\mathbb{E}_{u,z}[A(u)B(u \oplus z)] = \mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)] \]

\[= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)] \]

\[\leq \|T_{\sqrt{1-2\eta}}A\|_2 \cdot \|T_{\sqrt{1-2\eta}}B\|_2 \]

\[\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta} \]

\[= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)} \]

\[= \frac{1}{n^{1/(1-\eta)}} \cdot \mathbb{E}_u[A(u)] = 1/n \]
Khot-Vishnoi - Classical bound (2)

\[\mathbb{E}_{u,z}[A(u)B(u \oplus z)] = \mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)] \]

\[= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)] \]

\[\leq \|T_{\sqrt{1-2\eta}}A\|_2 \cdot \|T_{\sqrt{1-2\eta}}B\|_2 \]

\[\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta} \]

\[= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)} \]

\[= \frac{1}{n^{1/(1-\eta)}} \cdot \mathbb{E}_u[A(u)] = 1/n \]

\[(T_{1-2\eta}F)(u) = \mathbb{E}_z[F(u \oplus z)] \]

noise operator

\[\|T_{\rho}F\|_2 \leq \|F\|_{1+\rho^2} \]

hypercontractive inequality
Khot-Vishnoi - Classical bound (2)

\[E_{u,z}[A(u)B(u \oplus z)] = E_u[A(u) \cdot (T_{1-2\eta}B)(u)] = E_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)] \leq \|T_{\sqrt{1-2\eta}}A\|_2 \cdot \|T_{\sqrt{1-2\eta}}B\|_2 \leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta} = \left(E_u[A(u)] \right)^{1/(2-2\eta)} \cdot \left(E_u[B(u)] \right)^{1/(2-2\eta)} = \frac{1}{n^{1/(1-\eta)}} \cdot E_u[A(u)] = 1/n \]
Khot-Vishnoi - Classical bound (2)

\[\mathbb{E}_{u,z}[A(u)B(u \oplus z)] = \mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)] \]

\[= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)] \]

\[\leq \|T_{\sqrt{1-2\eta}}A\|_2 \cdot \|T_{\sqrt{1-2\eta}}B\|_2 \]

\[\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta} \]

\[= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)} \]

\[= \frac{1}{n^{1/(1-\eta)}} \cdot \mathbb{E}_u[A(u)] = 1/n \]
Khot-Vishnoi - Classical bound (2)

\[\mathbb{E}_{u,z}[A(u)B(u \oplus z)] = \mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)] \]

\[= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)] \]

\[\leq \|T_{\sqrt{1-2\eta}}A\|_2 \cdot \|T_{\sqrt{1-2\eta}}B\|_2 \]

\[\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta} \]

\[= \left(\mathbb{E}_u[A(u)] \right)^{1/(2-2\eta)} \cdot \left(\mathbb{E}_u[B(u)] \right)^{1/(2-2\eta)} \]

\[= \frac{1}{n^{1/(1-\eta)}} \cdot \mathbb{E}_u[A(u)] = 1/n \]

\[(T_{1-2\eta}F)(u) = \mathbb{E}_z[F(u \oplus z)] \]

- noise operator

- hypercontractive inequality
 \[\|T\rho F\|_2 \leq \|F\|_{1+\rho^2} \]
Khot-Vishnoi - Classical bound (2)

\[\mathbb{E}_{u,z}[A(u)B(u \oplus z)] \]

\[= \mathbb{E}_u[A(u) \cdot (T_{1-2\eta}B)(u)] \]

\[= \mathbb{E}_u[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)] \]

\[\leq \|T_{\sqrt{1-2\eta}}A\|_2 \cdot \|T_{\sqrt{1-2\eta}}B\|_2 \]

\[\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta} \]

\[= (\mathbb{E}_u[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_u[B(u)])^{1/(2-2\eta)} \]

\[= \frac{1}{n^{1/(1-\eta)}} \cdot \mathbb{E}_u[A(u)] = \frac{1}{n} \]
Khot-Vishnoi - Classical bound (2)

\[\mathbb{E}_{u,z}[A(u)B(u \oplus z)] = \mathbb{E}_{u}[A(u) \cdot (T_{1-2\eta}B)(u)] \]

\[= \mathbb{E}_{u}[(T_{\sqrt{1-2\eta}}A)(u) \cdot (T_{\sqrt{1-2\eta}}B)(u)] \]

\[\leq \|T_{\sqrt{1-2\eta}}A\|_2 \cdot \|T_{\sqrt{1-2\eta}}B\|_2 \]

\[\leq \|A\|_{2-2\eta} \cdot \|B\|_{2-2\eta} \]

\[= (\mathbb{E}_{u}[A(u)])^{1/(2-2\eta)} \cdot (\mathbb{E}_{u}[B(u)])^{1/(2-2\eta)} \]

\[= \frac{1}{\sqrt{n}^{1/(1-\eta)}} \cdot \mathbb{E}_{u}[A(u)] = 1/n \]

\[(T_{1-2\eta}F)(u) = \mathbb{E}_{z}[F(u \oplus z)] \]

noise operator

\[\|T_{\rho}F\|_2 \leq \|F\|_{1+\rho^2} \]

hypercontractive inequality
KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1 - 2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $\frac{1}{n\eta/(1-\eta)} \sim \frac{1}{n}$
- Violation $\frac{\omega_n^*(KV)}{\omega(KV)} = \Omega\left(\frac{n}{(\log n)^2}\right)$
- Close to optimal, both in terms of local dimension and number of outputs.
KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- **Entangled value** $(1 - 2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $\frac{1}{n\eta/(1-\eta)} \sim \frac{1}{n}$
- **Violation** $\frac{\omega_n^*(KV)}{\omega(KV)} = \Omega\left(\frac{n}{(\log n)^2}\right)$
- Close to optimal, both in terms of local dimension and number of outputs.
KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1 - 2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $\frac{1}{n\eta/(1-\eta)} \sim \frac{1}{n}$
- Violation $\frac{\omega^*_n(KV)}{\omega(KV)} = \Omega\left(\frac{n}{(\log n)^2}\right)$
- Close to optimal, both in terms of local dimension and number of outputs.
KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1 - 2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $\frac{1}{n\eta/(1-\eta)} \sim \frac{1}{n}$
- Violation $\frac{\omega^*_n(KV)}{\omega(KV)} = \Omega\left(\frac{n}{(\log n)^2}\right)$

- Close to optimal, both in terms of local dimension and number of outputs.
KV Bell Inequality violation

Setting $\eta = \frac{1}{2} - \frac{1}{\log n}$

- Entangled value $(1 - 2\eta)^2 \sim \frac{1}{(\log n)^2}$
- Classical value is roughly $\frac{1}{n\eta/(1-\eta)} \sim \frac{1}{n}$
- Violation $\frac{\omega^*_n(KV)}{\omega(KV)} = \Omega\left(\frac{n}{(\log n)^2}\right)$
- Close to optimal, both in terms of local dimension and number of outputs.
Conclusions and Open Problems

Comparison

<table>
<thead>
<tr>
<th></th>
<th>JP</th>
<th>HM</th>
<th>KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Dim</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Outputs</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Inputs</td>
<td>n</td>
<td>2^n, $\frac{n}{2}$</td>
<td>$\frac{2^n}{n}$</td>
</tr>
<tr>
<td>Violation</td>
<td>$\frac{\sqrt{n}}{\log n}$</td>
<td>$\frac{\sqrt{n}}{\log n}$</td>
<td>$\frac{n}{(\log n)^2}$</td>
</tr>
</tbody>
</table>

Open problems

- Close the gap with the upper bound $O(n)$.
- Reduce the number of inputs.
- Consider games with more than two players.
Conclusions and Open Problems

Comparison

<table>
<thead>
<tr>
<th></th>
<th>JP</th>
<th>HM</th>
<th>KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Dim</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Outputs</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Inputs</td>
<td>n</td>
<td>2^n, $\frac{n}{2}$</td>
<td>$\frac{2^n}{n}$</td>
</tr>
<tr>
<td>Violation</td>
<td>$\sqrt{n \log n}$</td>
<td>$\sqrt{n \log n}$</td>
<td>$\frac{n}{(\log n)^2}$</td>
</tr>
</tbody>
</table>

Open problems

- Close the gap with the upper bound $O(n)$.
- Reduce the number of inputs.
- Consider games with more than two players.
Conclusions and Open Problems

Comparison

<table>
<thead>
<tr>
<th></th>
<th>JP</th>
<th>HM</th>
<th>KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Dim</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Outputs</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Inputs</td>
<td>n</td>
<td>$2^n, \frac{n}{2}$</td>
<td>$\frac{2^n}{n}$</td>
</tr>
<tr>
<td>Violation</td>
<td>$\frac{\sqrt{n}}{\log n}$</td>
<td>$\frac{\sqrt{n}}{\log n}$</td>
<td>$\frac{n}{(\log n)^2}$</td>
</tr>
</tbody>
</table>

Open problems

- **Close the gap** with the upper bound $O(n)$.
- Reduce the number of *inputs*.
- Consider games with more than two players.
Conclusions and Open Problems

<table>
<thead>
<tr>
<th>Comparison</th>
<th>JP</th>
<th>HM</th>
<th>KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Dim</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Outputs</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Inputs</td>
<td>n</td>
<td>$2^n, \frac{n}{2}$</td>
<td>$\frac{2^n}{n}$</td>
</tr>
<tr>
<td>Violation</td>
<td>$\frac{\sqrt{n}}{\log n}$</td>
<td>$\frac{\sqrt{n}}{\log n}$</td>
<td>$\frac{n}{(\log n)^2}$</td>
</tr>
</tbody>
</table>

Open problems

- **Close the gap** with the upper bound $O(n)$.
- Reduce the number of *inputs*.
- Consider games with more than two players.
Conclusions and Open Problems

<table>
<thead>
<tr>
<th>Comparison</th>
<th>JP</th>
<th>HM</th>
<th>KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Dim</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Outputs</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>#Inputs</td>
<td>n</td>
<td>$2^n, \frac{n}{2}$</td>
<td>$\frac{2^n}{n}$</td>
</tr>
<tr>
<td>Violation</td>
<td>$\frac{\sqrt{n}}{\log n}$</td>
<td>$\frac{\sqrt{n}}{\log n}$</td>
<td>$\frac{n}{(\log n)^2}$</td>
</tr>
</tbody>
</table>

Open problems

- **Close the gap** with the upper bound $O(n)$.
- Reduce the number of *inputs*.
- Consider games with more than two players.