Parallel repetition of nonlocal games

Thomas Vidick
UC Berkeley

Joint work with Julia Kempe (LRI, Paris)
Nonlocal games

- Referee picks \((s,t) \sim \pi\) and sends them to the players
- Players provide answers \(a,b\)
- No communication allowed, but can share \(|\psi\rangle\)

Classical value \(\omega(G) = \text{Max. Winning Prob.}\) (over all classical strategies)

- Framework to study Bell, Tsirelson inequalities
- Also arise in cryptography (device-independent QKD), testing, complexity theory (PCPs)....
Parallel repetition

• Suppose given G such that either
 – $\omega^*(G) = 1$ ("honest case"), or
 – $\omega^*(G) < 0.999$ ("dishonest case")

 Can we amplify the difference (to, say, 1 vs 0.5)?

• Sequential repetition works
 – $\omega^*(G^{seq-l}) = \omega^*(G)^l$
 – Drives us outside the model of one-round games

• Parallel repetition...?
 – Send l pairs of questions simultaneously, receive l pairs of answers, accept iff all correct
 – It works: the rounds are independent! [FRS’88]
 – Not quite: [F,W]: game G, $\omega^*(G^{par-2}) = \omega^*(G) = 2/3$
A brief summary of a long history

- [FK’94]: polynomial-rate decrease for projection games
- Modify the repeated game in order to facilitate analysis
 → Mostly interested in performing amplification
Feige-Kilian repetition

• Repeated (classical deterministic) strategies

Q: 9 4 6 7 3 7 9 4 6 7 3 7
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
A: 0 1 2 1 1 2 0 1 2 1 1 2

...or...

• Goal: fail strategies very far from independent repetitions

• G a projection game. Game $FK(G, l)$:

 - $(l - \sqrt{l})$ rounds are “confuse” rounds: send random questions, accept any answer.

• Thm [FK’94]: $\omega(FK(G, l))$ decreases polynomially fast with l
Feige-Kilian, proof idea

[FK] prove a “dichotomy” theorem.

Criterion: a $(1-\epsilon)$ fraction of questions have no answer arising with probability $\geq \epsilon$ (as questions in other rounds vary)

- True: Player is using a highly correlated strategy
- False (informal): At least a subset of the game rounds are played independently of each other

In both cases we can bound the value $\omega(FK(G, l))$
Entangled strategies (1)

- Bob’s answers can be random but still correlated with Alice’s.
- Need a new criterion to distinguish honest product strategies from correlated ones.

Suppose Bob measures \(\textit{twice, sequentially} \)

- First as if \(q = (6,4,6,2,…,) \)
- Second as if \(q = (9,4,6,7,…,) \)

Will he obtain the same outcome (to the third question)?

- Yes if uses honest, product, projective strategy
Entangled strategies (2)

- We prove a “quantum dichotomy theorem”
 - Criterion: sequential measurement does not lead to same answer
 - Yes: strategy will not satisfy projection constraints
 - No (informal): can argue about strategy being independent across rounds

- In the second case, obtain almost-product form of strategy
 \[B_{q_1 q_2 q_3 \ldots q_l}^{a_1 a_2 a_3 \ldots a_l} \approx \prod_{q_1}^{a_1} \prod_{q_2}^{a_2} B_{q_3 \ldots q_l}^{a_3 \ldots a_l} \], where \(\{ \prod_{q_i}^{a_i} \}_{a_i} \) is a POVM
 - Based on “orthogonalization lemma”: almost-orthogonal operators are close to perfectly orthogonal ones.

- In both cases we can bound the value \(\omega^*(FK(G, l)) \)
Summary of results

• The value of nonlocal games can be reduced in parallel.

• Thm: If G is a projection game, FK-repetition decreases its entangled value at a polynomial rate
 – If in addition G is a free game, then direct parallel repetition works

• If G is a general game, need to add “consistency” rounds in addition to “game”, “confuse” rounds
 – Consistency round: same question, should give same answer
 – Again, polynomial decrease in the value
 – Value of G could go from 1 to < 1!
 – Does not happen if honest strategy does not use any entanglement, or only the maximally entangled state.
Lots of open questions!

• Can we get an exponential rate?

• Would direct parallel repetition also work?

• Can one prove “threshold” amplification?

• More players, more rounds, quantum messages?

• Can extract “direct product test”; applications?