Quantum Interactive Proofs with Weak Error Bounds

Tsuyoshi Ito
Institute for Quantum Computing & School of Computer Science
University of Waterloo

Joint work with
Hirotada Kobayashi (National Institute of Informatics)
John Watrous (IQC & SCS, University of Waterloo)
A motivation for main result

QIP = PSPACE [Jain, Ji, Upadhyay, Watrous STOC’10]
A motivation for main result

QIP \subseteq PSPACE [Jain, Ji, Upadhyay, Watrous STOC’10]

Proof requires the assumption of bounded error

IP \subseteq PSPACE [Feldman’86]

Holds even without error bounds

Why are these results so different?

Main result:
QIP with suitable weaker error bounds = EXP

Also: IP \neq QIP without error bounds (unless PSPACE = EXP)
Outline

• Classical and quantum interactive proofs

• $\text{IP} \subseteq \text{PSPACE}$ vs. $\text{QIP} \subseteq \text{PSPACE}$

• Main result: QIP with $2^{-2^{\text{poly}}}$ gap = EXP

• Proof technique:
 No-signaling 2-prover 1-round interactive proofs

• Other results

• Open problems
Interactive proofs

Verifier
(Randomized poly-time)

Prover
(Computationally unbounded)

\[x \in L \]

\[
\begin{aligned}
\text{Accept (convinced)} \\
\text{Reject (unconvinced)}
\end{aligned}
\]

Tries to make V accept with as high prob. as possible

V has to decide whether prover is honest or not (with small error probability)

[Babai ’85]
[Goldwasser, Micali, Rackoff ’85]
Interactive proofs

Verifier’s job:
- Completeness: $x \in L \Rightarrow \exists P. V$ accepts with prob. $\geq a(|x|)$
- Soundness: $x \notin L \Rightarrow \forall P. V$ accepts with prob. $\leq b(|x|)$

System has *bounded error* when $a(n) - b(n) \geq 1/poly$

IP: Class of languages L having a bounded-error IP system

$IP = \text{PSPACE}$

[Goldwasser, Micali, Rackoff ‘85]

[Babai ’85]

[Lund, Fortnow, Karloff, Nisan FOCS’90; Shamir FOCS’90]
Interactive proofs

Verifier
(Randomized poly-time)

Prover
(Computationally unbounded)

Accept (convinced)
Reject (unconvinced)

\[x \in L \]

IP: Class of languages \(L \) having a bounded-error IP system

[Babai ’85]
[Goldwasser, Micali, Rackoff ’85]
Quantum interactive proofs

[Watrous FOCS’99]

Verifier
(Quantum poly-time)
(Quantum messages)

Prover
(Computationally unbounded)

\(x \in L \)

Accept (convinced)
Reject (unconvinced)

QIP: Class of languages \(L \) having a bounded-error quantum IP system
Quantum interactive proofs

Very different from classical IP in some senses:

- Parallelizable to 3 messages [Kitaev, Watrous STOC’00]
- Verifier only has to send one bit which is coin flip [Marriott, Watrous CCC’04]
Quantum interactive proofs

Very different from classical IP in some senses:

- Parallelizable to 3 messages [Kitaev, Watrous STOC’00]
- Verifier only has to send one bit which is coin flip [Marriott, Watrous CCC’04]
Quantum interactive proofs

Very different from classical IP in some senses:

- Parallelizable to 3 messages [Kitaev, Watrous STOC’00]
- Verifier only has to send one bit which is coin flip [Marriott, Watrous CCC’04]
Power of quantum interactive proofs

\[\text{PSPACE} \subseteq \text{IP} \subseteq \text{QIP} \subseteq \text{EXP} \]

Trivial

Semidefinite programming formulation

[LFKN][Shamir]

Jain, Ji, Upadhyay, Watrous STOC’10:

\[\text{QIP} = \text{PSPACE} \]

Approximates the optimal prover by a fast parallel algorithm; heavily depends on *bounded-error* assumption

IP \subseteq \text{PSPACE} \text{ is easy: enumerate all possible responses for provers in poly-space and choose the best one}
Main result

\[
\text{QIP with } 2^{-2^{\text{poly}}} \text{ gap} = \text{EXP}
\]
(with a standard gate set: Toffoli, Hadamard, \(\pi/2\)-phase shift)

Consequences: Several new differences between classical and quantum interactive proofs

- IP \(\neq\) QIP in the unbounded-error setting*
- Bounded-error assumption in [JJUW10] is necessary*
- QIP systems can have \(2^{-2^{\text{poly}}}\) gap, unlike IP systems

* Unless \(\text{PSPACE} = \text{EXP}\)
Easy direction: QIP with $2^{-2^{\text{poly}}}$ gap $\subseteq \text{EXP}$

Immediate from a direct formulation of QIP systems by semidefinite programs [Gutoski, Watrous STOC’07]

QIP system
→ Semidefinite program of exponential size
→ Solve it to double-exp precision by standard algorithms for SDP

(This only uses a very special case of [GW07]: [GW07] implies quantum refereed games with $2^{-2^{\text{poly}}}$ gap are still $\subseteq \text{EXP}$)
Proof outline: QIP with $2^{-2^{\text{poly}}}$ gap \supseteq EXP

1. Construct a no-signaling 2-prover 1-round interactive proof system with $2^{-2^{\text{poly}}}$ gap for an EXP-complete problem

2. Convert it to a QIP system without ruining the gap
No-signaling box

Prob. dist. \(p(a_1, a_2 | q_1, q_2) \) satisfying no-signaling conditions:

- Marginal distribution of \(a_1 \) only depends on \(q_1 \)
 \[
p_1(a_1 | q_1) = \sum_{a_2} p(a_1, a_2 | q_1, q_2)
\]
- Marginal distribution of \(a_2 \) only depends on \(q_2 \)
 \[
p_2(a_2 | q_2) = \sum_{a_1} p(a_1, a_2 | q_1, q_2)
\]
MIP_{ns}(2,1) system (considered in [Holenstein ’09] etc.)

Provers use a no-signaling box of their choice

Verifier

Prover A (Alice)

Prover B (Bob)

Accept/Reject

\[x \in L \]

\[q_1 \]

\[a_1 \]

\[q_2 \]

\[a_2 \]
EXP-complete problem: Succinct Circuit Value (SCV)

Given: Exponentially large Boolean circuit (suitably encoded) consisting of Const-0, Const-1, 2-input AND, 2-input OR and NOT gates, and a gate g in it

Question: Does the gate g output the value 1?
2-prover protocol for SCV

Verifier performs the following:

- Pick 2 gates s, t independently at random.
- Ask Alice all the input values of gate s, and ask Bob the output value of gate t.
- Reject if anything is wrong:
 - $s = t \Rightarrow$ answers must be consistent with the gate type.
 - t is an input of $s \Rightarrow$ corresponding answers must coincide.
 - $t = g \Rightarrow$ Bob’s answer must be 1.
2-prover protocol for SCV

Verifier performs the following:

- Pick 2 gates s, t independently at random.
- Ask Alice all the input values of gate s, and ask Bob the output value of gate t.
- Reject if anything is wrong:
 - $s=t \Rightarrow$ answers must be consistent with the gate type.
 - t is an input of $s \Rightarrow$ corresponding answers must coincide.
 - $t=g \Rightarrow$ Bob’s answer must be 1.
2-prover protocol for SCV

Verifier performs the following:

• Pick 2 gates s, t independently at random

• Ask Alice all the input values of gate s, and ask Bob the output value of gate t

• Reject if anything is wrong:
 • $s = t$ ⇒ answers must be consistent with the gate type
 • t is an input of s ⇒ corresponding answers must coincide
 • $t = g$ ⇒ Bob’s answer must be 1
2-prover protocol for SCV

Verifier performs the following:

- Pick 2 gates s, t independently at random.
- Ask Alice all the input values of gate s, and ask Bob the output value of gate t.
- Reject if anything is wrong:
 - $s = t \Rightarrow$ answers must be consistent with the gate type.
 - t is an input of $s \Rightarrow$ corresponding answers must coincide.
 - $t = g \Rightarrow$ Bob’s answer must be 1.
Properties

• Perfect completeness

• Verifier almost always accepts without checking anything
 \[1 - 4/N = 1 - 2^{-\text{poly}} \]
 \((N = \text{the number of gates})\)
 even without allowing no-signaling boxes

• Even worse with no-signaling boxes:
 Soundness error can be \(1 - 2^{-\frac{(N-1)}{2}} = 1 - 2^{-2\text{poly}}\)

• Soundness error is \(\leq 1 - 2^{-2\text{poly}}\) even with no-signaling boxes
 (by simple proof using induction)
No-signaling 2-prover 1-round system to QIP system

- Generate s, t as max-ent states: $\sum_s |s\rangle_S |s\rangle_{S'} \otimes \sum_t |t\rangle_T |t\rangle_{T'}$

- Send both S and T to the prover, and receive S, T and corresponding answers A, B:
 $$\sum_s |s\rangle_S |s\rangle_{S'} |a(s)\rangle_A \otimes \sum_t |t\rangle_T |t\rangle_{T'} |b(t)\rangle_B$$

- Randomly perform one of the following tests:
 1. Measure S', T', A, B and check the answers are consistent
 2. Send S and A, receive S, and check S and S' are max-ent
 3. Send T and B, receive T, and check T and T' are max-ent
Properties

- Perfect completeness

- Soundness error \(\geq 1 - 2^{-2^{\text{poly}}}\)

- Soundness error \(\leq 1 - 2^{-2^{\text{poly}}}\):

 - Verifier’s test ensures prover acts according to some “approximately no-signaling” strategy in 2-prover protocol

 - Soundness of 2-prover protocol ensures if \(x \notin L\), no-signaling strategies cannot make verifier accept well

 - [Holenstein’09] “Approximately no-signaling” strategies cannot outperform no-signaling strategies by much
Other results

• QIP(2) (= 2-message QIP) with $2^{-\text{poly}}$ gap \supseteq PSPACE (easy consequence of [Wehner ICALP’06])

• Upper bounds on some classes with sharp threshold

 • QIP with no gap \subseteq EXPSPACE (use [GW07] and PSPACE algorithm for exact semidefinite feasibility problem [Canny STOC’88])

 • QMA$_1$ (= 1-message QIP with perfect completeness) with no gap \subseteq PSPACE (use [MW04] and a parallel algorithm for linear dependence [Csanky ’76])
Open problems

- \(\text{PSPACE} \subseteq \text{QIP with } 2^{-\text{poly}} \text{ gap} \subseteq \text{EXP} \)

Can we reduce the error of multiplicative weights update?

- \(\text{EXP} \subseteq \text{QIP without gap} \subseteq \text{EXPSPACE} \)

Does semidefinite feasibility have a QIP protocol without gap?

How small can be the gap of QIP protocols?

- \(\text{PSPACE} \subseteq \text{QIP}(2) \text{ without gap} \subseteq \text{EXPSPACE} \)

Answering these hopefully leads to new paradigms for protocol construction / simulation