Information propagation for interacting particle systems

Norbert Schuch
California Institute of Technology

joint work with Sarah Harrison, Tobias Osborne, and Jens Eisert
Introduction

- How fast can **information propagate** in physical systems?
 - Obvious answer: **Relativity ➞ No faster than the speed of light!**

- This is true, but ...
Introduction

- How fast can **information propagate** in physical systems?
 - Obvious answer: **Relativity** ⇒ **No faster than the speed of light!**

- This is true, but ...

 ... e.g. in classical mechanical systems, information propagates **at a speed of sound**, without the need for relativistic arguments!

- This speed can be understood from the microscopic model, using
 - that it is **local**
 - that the interactions have **bounded strength**
Introduction

• How fast can information propagate in physical systems?
 ➔ Obvious answer: Relativity ⇒ No faster than the speed of light!

• This is true, but ...

... e.g. in classical mechanical systems, information propagates at a speed of sound, without the need for relativistic arguments!

• This speed can be understood from the microscopic model, using
 - that it is local
 - that the interactions have bounded strength

⇒ Finite propagation speed can be understood non-relativistically!
Quantum mechanical systems

- What about quantum mechanical systems?
- **Quantum spin systems:**

\[H = \sum_{\langle j, k \rangle} h_{jk} ; \quad \| h_{jk} \|_{op} \leq J \] : local Hamiltonian of bounded strength
Quantum mechanical systems

• What about quantum mechanical systems?

• Quantum spin systems:

\[H = \sum_{\langle j, k \rangle} h_{jk} ; \quad \| h_{jk} \|_{\text{op}} \leq J : \text{local Hamiltonian of bounded strength} \]

• Lieb-Robinson bounds:

[Lieb & Robinson '72, Hastings '04, Nachtergaele & Sims '06]

\[\| [A(t), B] \| \leq c \| A \| \| B \| \exp[-(L - vt)/\xi] \]

Lieb-Robinson velocity \(v = c_G J \) depends on graph
Quantum mechanical systems

- What about quantum mechanical systems?

Quantum spin systems:

\[
H = \sum_{\langle j, k \rangle} h_{jk} ; \quad \| h_{jk} \|_{\text{op}} \leq J : \text{local Hamiltonian of bounded strength}
\]

Lieb-Robinson bounds:

\[
\|[A(t), B]\| \leq c \|A\| \|B\| \exp\left[-(L - vt)/\xi\right]
\]

Lieb-Robinson velocity \(v = c_G J \)

- question of fundamental interest
- propagation speed of perturbations
- facilitates simulation of dynamics
- imaginary time \(\Rightarrow \) exponential decay of correlations

[Lieb & Robinson '72, Hastings '04, Nachtergaele & Sims '06]
Bosonic systems

- What about systems of interacting particles, such as bosons?
 (→ in particular, chains of quantum oscillators)
Bosonic systems

• What about systems of interacting particles, such as bosons?
 (→ in particular, chains of quantum oscillators)

• canonical example: Bose-Hubbard model:
Bosonic systems

- What about **systems of interacting particles**, such as bosons?

 (→ in particular, chains of *quantum* oscillators)

- canonical example: **Bose-Hubbard model**:

 \[
 H_{BH} = -\tau \sum_{<j,k>} (\hat{a}_j^\dagger \hat{a}_k^\dagger + \hat{a}_k \hat{a}_j) + U \sum_j \hat{n}_j (\hat{n}_j - 1)
 \]

 \[
 \hat{a}_j : \text{annihilate a particle at site } j \\
 \hat{a}_j^\dagger : \text{create a particle at site } j \\
 \hat{a}_j |n\rangle = \sqrt{n} |n - 1\rangle \quad \leftrightarrow \quad \hat{n}_j = \hat{a}_j^\dagger \hat{a}_j : \text{counts particles at site}
 \]
What is the problem with bosons?

- What is the problem with bosonic systems?
What is the problem with bosons?

- What is the problem with bosonic systems?

- Lieb-Robinson bound does not apply:

\[a_j^{\dagger} a_k | n_j - 1, n_k \rangle = \sqrt{n_j n_k} | n_j, n_k - 1 \rangle \]

⇒ hopping term \(a_j^{\dagger} a_k \) unbounded (or only by \(\| a_j^{\dagger} a_k \| \leq N_{\text{tot}} \))

⇒ Lieb-Robinson velocity \(v \propto \| h_{jk} \| \sim N_{\text{tot}} \)
What is the problem with bosons?

- What is the problem with bosonic systems?

- Lieb-Robinson bound does not apply:
 \[a_j^\dagger a_k |n_j - 1, n_k\rangle = \sqrt{n_j n_k} |n_j, n_k - 1\rangle \]
 \(\Rightarrow \) hopping term \(a_j^\dagger a_k \) unbounded (or only by \(\|a_j^\dagger a_k\| \leq N_{\text{tot}} \))
 \(\Rightarrow \) Lieb-Robinson velocity \(\nu \propto \|h_{jk}\| \sim N_{\text{tot}} \)

- examples where \(n_k \) and thus \(\nu \) grow unboundedly exist! \[\text{[Gross & Eisert 2009]} \]
 \(\Rightarrow \) need constraints on Hamiltonian (e.g. particle number conserving)
What is the problem with bosons?

- What is the problem with bosonic systems?

- Lieb-Robinson bound does not apply:

 \[a_j^\dagger a_k |n_j - 1, n_k\rangle = \sqrt{n_j n_k} |n_j, n_k - 1\rangle \]

 ⇒ hopping term \(a_j^\dagger a_k \) unbounded (or only by \(||a_j^\dagger a_k|| \leq N_{\text{tot}} \))

 ⇒ Lieb-Robinson velocity \(v \propto ||h_{jk}|| \sim N_{\text{tot}} \)

- examples where \(n_k \) and thus \(v \) grow unboundedly exist! \[\text{[Gross & Eisert 2009]}\]

 ⇒ need **constraints on Hamiltonian** (e.g. particle number conserving)

- hopping rate (and thus \(v \)) will depend on the filling of the lattice:

 ⇒ need **constraints on initial state**

- Note: bounds exist for quadr. Hamiltonians and certain perturbations thereof \[\text{[Nachtergaele, Raz, Schlein, Sims 2009]}\]
Idea: Restrict to relevant models

• Aim: propagation speed for Bose-Hubbard type models

• How can we obtain a meaningful propagation speed?
 - restrict to certain **initial states of interest** *(which allow for finite speed of propagation)*
 - only keep track of **relevant information** *(how do particles propagate)*
Idea: Restrict to relevant models

- Aim: propagation speed for **Bose-Hubbard type models**
- How can we obtain a meaningful propagation speed?
 - restrict to certain **initial states of interest**
 (which allow for finite speed of propagation)
 - only keep track of **relevant information**
 (how do particles propagate)
- We study: How do particles (excitations) propagate into an empty region?
Idea: Restrict to relevant models

- Aim: propagation speed for **Bose-Hubbard type models**

- How can we obtain a meaningful propagation speed?
 - restrict to certain **initial states of interest**
 (which allow for finite speed of propagation)
 - only keep track of **relevant information**
 (how do particles propagate)

- We study: How do particles (excitations) propagate into an empty region?
Propagation of particles in the Hubbard model

- Generalized Hubbard model:

\[H_{BH} = - \sum_{j<k} \tau_{jk} (\hat{a}_{j}^{\dagger} \hat{a}_{k} + \hat{a}_{k}^{\dagger} \hat{a}_{j}) + f(\hat{n}_{1}, \ldots, \hat{n}_{L}) \]

- consider time evolution \(\dot{\rho}(t) = -i[H_{BH}, \rho(t)] \) from initial state \(\rho(0) \)
Propagation of particles in the Hubbard model

• Generalized Hubbard model:

\[H_{BH} = - \sum_{\langle j,k \rangle} \tau_{jk} (\hat{a}^\dagger_j \hat{a}_k + \hat{a}^\dagger_k \hat{a}_j) + f(\hat{n}_1, \ldots, \hat{n}_L) \]

• consider time evolution \(\dot{\rho}(t) = -i[H_{BH}, \rho(t)] \) from initial state \(\rho(0) \)

• consider only the **expected number of bosons per site**:

\[\alpha_j(t) := \text{tr}[\hat{n}_j \rho(t)] \]
Propagation of particles in the Hubbard model

- Generalized Hubbard model:

\[H_{BH} = - \sum_{\langle j, k \rangle} \tau_{jk} (\hat{a}_j^\dagger \hat{a}_k + \hat{a}_k^\dagger \hat{a}_j) + f(\hat{n}_1, \ldots, \hat{n}_L) \]

- consider time evolution \(\dot{\rho}(t) = -i[H_{BH}, \rho(t)] \) from initial state \(\rho(0) \)

- consider only the expected number of bosons per site:

\[\alpha_j(t) := \text{tr}[\hat{n}_j \rho(t)] \]

- \(\dot{\rho}(t) = -i[H, \rho(t)] \) ⇒ differential inequality \(\dot{\alpha}_j(t) \leq 2 \sum_{\langle j, k \rangle} \tau_{jk} [\alpha_j(t) \alpha_k(t)]^{1/2} \)

⇒ worst-case upper bound \(\gamma_j(t) \geq \alpha_j(t) \) evolves according to:

\[\dot{\gamma}_j(t) = 2 \sum_{\langle j, k \rangle} \tau_{jk} (\gamma_j(t) + \gamma_k(t)) \quad \text{(linearized)} \]
Obtaining a speed limit

- bound $\gamma_j(t) \geq \alpha_j(t) \Rightarrow$ worst-case solution for propagation

$\bar{\alpha}(t) \leq e^{Mt} \bar{\alpha}(0)$ with M the “adjacency matrix”
Obtaining a speed limit

- bound $\gamma_j(t) \geq \alpha_j(t)$ \Rightarrow worst-case solution for propagation

$$\tilde{\alpha}(t) \leq e^{Mt} \tilde{\alpha}(0)$$

with M the “adjacency matrix”

- M banded matrix $\Rightarrow e^{Mt}$ decays exponentially away from diagonal

$$[e^{Mt}]_{jk} \leq c e^{\nu t - d(j,k)}$$

with $\nu = c_G \tau$

[Benzi & Golub '99]
Obtaining a speed limit

- bound $\gamma_j(t) \geq \alpha_j(t) \Rightarrow$ worst-case solution for propagation
 \[\bar{\alpha}(t) \leq e^{Mt} \bar{\alpha}(0) \]
 with M the “adjacency matrix”

- M banded matrix $\Rightarrow e^{Mt}$ decays exponentially away from diagonal
 \[\left[e^{Mt} \right]_{jk} \leq c e^{vt-d(j,k)} \]
 with $v = c_G \tau$

- together:
 \[\alpha_j(t) \leq CN_0 e^{vt-l} \]
 $v = c_G \tau$

\Rightarrow speed independent of particle number!
Speed limit for interacting particles

\[\alpha_j(t) \leq C N_0 e^{\nu t - l} \text{ where } \nu \propto \tau \]

• Proof idea: Study evolution of worst case bound on \(\alpha_j(t) \):
Speed limit for interacting particles

\[\alpha_j(t) \leq C N_0 e^{\nu t - l} \quad \text{where} \quad \nu \propto \tau \]

- Proof idea: **Study evolution of worst case bound** on \(\alpha_j(t) \):

![Graph showing the evolution of \(\alpha_j(t) \) over time, with a peak and a time-evolving exponential decay.](image)
Speed limit for interacting particles

\[\alpha_j(t) \leq C N_0 e^{\nu t - t} \quad \text{where} \quad \nu \propto \tau \]

- Proof idea: **Study evolution of worst case bound** on \(\alpha_j(t) \):
Proof idea: **Study evolution of worst case bound** on $\alpha_j(t)$:

\[\alpha_j(t) \leq C N_0 e^{\nu t - l} \quad \text{where} \quad \nu \propto \tau \]

- argument works for **any Hubbard-type model** on **any graph**
Proof idea: Study evolution of worst case bound on $\alpha_j(t)$:

- Argument works for any Hubbard-type model on any graph
- Extension possible to
 - higher moments of particle number
 - arbitrary local operators
 - operators acting on larger blocks (up to log-size)
 … by iteratively bounding those quantities by $\alpha_j(t)$.
Extensions

• can be extended to **several species** of particles, **fermions**, **Bose-Fermi mixtures**, and even **anyons**:

\[H = - \sum_{\langle j,k \rangle,s} \tau_{jk}(\hat{a}_{j,s}^{\dagger} \hat{a}_{k,s} + \hat{a}_{k,s}^{\dagger} \hat{a}_{j,s}) + f(\{n_{j,s}\}_{j,s}) \]

→ can be understood as **hopping on independent graphs**
Extensions

• can be extended to **several species** of particles, **fermions**, **Bose-Fermi mixtures**, and even **anyons**:

\[
H = - \sum_{<j,k>,s} \tau_{jk} (\hat{a}^\dagger_{j,s} \hat{a}_{k,s} + \hat{a}^\dagger_{k,s} \hat{a}_{j,s}) + f(\{n_{j,s}\}_{j,s})
\]

→ can be understood as **hopping on independent graphs**

• works for certain **dissipative theories**, e.g. for particle losses:

\[
\dot{\rho}(t) = -i[H_B, \rho(t)] - \mathcal{L}[\rho(t)]
\]
describes loss of particles

\[
\Rightarrow \dot{\alpha}_j(t) = \dot{\alpha}_j^{\text{Ham}}(t) - \dot{\alpha}_j^{\text{diss}}(t) \leq \dot{\alpha}_j^{\text{Ham}}(t)
\]

\[
\geq 0
\]
Extensions

- can be extended to **several species** of particles, **fermions**, **Bose-Fermi mixtures**, and even **anyons**:

\[
H = - \sum_{<j,k>,s} \tau_{jk} (\hat{a}_{j,s}^\dagger \hat{a}_{k,s} + \hat{a}_{k,s}^\dagger \hat{a}_{j,s}) + f(\{n_{j,s}\}_{j,s})
\]

\[\rightarrow\text{can be understood as } \text{hopping on independent graphs}\]

- works for certain **dissipative theories**, e.g. for particle losses:

\[
\dot{\rho}(t) = -i[H_{BH}, \rho(t)] - \mathcal{L}[\rho(t)]
\]

\[\Rightarrow \dot{\alpha}_j(t) = \dot{\alpha}_j^{\text{Ham}}(t) - \dot{\alpha}_j^{\text{diss}}(t) \leq \dot{\alpha}_j^{\text{Ham}}(t) \geq 0\]

- idea extendible to **continuum theories**:

either continuum limit, or continuous differential inequalities for \(\alpha(x, t)\)
Summary

- We have studied the propagation of interacting bosons
- We have found a finite propagation speed for any excitation into the initially unoccupied region
- Propagation speed only depends on coupling strength
- Extends to Bose-Fermi mixtures, dissipative models, continuum theories

arXiv:1010.4576