Quantum One-Way Communication can be Exponentially Stronger than Classical Communication

Bo’az Klartag
Tel Aviv University

Oded Regev
Tel Aviv University & CNRS, ENS, Paris
Communication Complexity

- Alice is given input x and Bob is given y
- Their goal is to compute some (possibly partial) function $f(x,y)$ using the minimum amount of communication
- Two central models:
 1. Classical (randomized bounded-error) communication
 2. Quantum communication
Relation Between Models

- [Raz’99] presented a function that can be solved using $O(\log n)$ qubits of communication, but requires $\text{poly}(n)$ bits of randomized communication.
- Hence, Raz showed that: quantum communication can be exponentially stronger than classical communication.
- This is one of the most fundamental results in the area.
Is One-way Communication Enough?

- Raz’s quantum protocol, however, requires two rounds of communication.
- This naturally leads to the following fundamental question:

 Can quantum one-way communication be exponentially stronger than classical communication?
Previous Work

• [BarYossef-Jayram-Kerenidis’04] showed a relational problem for which quantum one-way communication is exponentially stronger than classical one-way

• This was improved to a function by [Gavinsky-Kempe-Kerenidis-Raz-deWolf’07]

• [Gavinsky’08] showed a relational problem for which quantum one-way communication is exponentially stronger than classical communication
Our Result

- We present a function with a $O(\log n)$ quantum one-way protocol that requires $\text{poly}(n)$ communication classically.
- Hence our result shows that:

 quantum one-way communication can be exponentially stronger than classical communication.

- This might be the strongest possible separation between quantum and classical communication.
Vector in Subspace Problem

[Кремер95, Раз99]

\[v \in \mathbb{R}^n \]

\[W \subseteq \mathbb{R}^n \]

\[\text{n/2-dim subspace} \]

- Alice is given a unit vector \(v \in \mathbb{R}^n \) and Bob is given an n/2-dimensional subspace \(W \subseteq \mathbb{R}^n \).
- They are promised that either\[v \text{ is in } W \quad \text{or} \quad v \text{ is in } W^\perp \]
- Their goal is to decide which is the case using the minimum amount of communication.
There is an easy logn qubit one-way protocol
- Alice sends a logn qubit state corresponding to her input and Bob performs the projective measurement specified by his input

No classical lower bound was known

We settle the open question by proving:

$$R(VIS) = \Omega(n^{1/3})$$

This is nearly tight as there is an \(O(n^{1/2})\) protocol
The Proof
The Rectangle Bound

- We prove our lower bound using a standard method known as the rectangle bound:
We prove our lower bound using a standard method known as the rectangle bound:

This reduces the problem to a clean mathematical question, described next...
Being on the Equator is Great!
Unfortunately, only 21.3% of the equator is land.

Even though 29.2% of earth is land.

How can we correct this injustice?
Choose a random equator!
The Main Sampling Statement

- A routine application of the rectangle bound (omitted), shows that the following implies the $\Omega(n^{1/3})$ lower bound:

- **Thm 1:** Let $A \subseteq S^{n-1}$ be an arbitrary set of measure at least $\exp(-n^{1/3})$. Let H be a uniform $n/2$ dimensional subspace. Then, the measure of $A \cap H$ is 1 ± 0.1 that of A except with probability at most $\exp(-n^{1/3})$.

- **Remark:** this is tight
Sampling Statement for Equators

- Thm 1 is proven by a recursive application of the following:

- **Thm 2**: Let $A \subseteq S^{n-1}$ be an arbitrary set of measure at least $\exp(-n^{1/3})$. Let H be a uniform $n-1$ dimensional subspace. Then, the measure of $A \cap H$ is $1 \pm t$ that of A except with probability at most $\exp(-t n^{2/3})$.

- So the error is typically $1 \pm n^{-2/3}$ and has exponential tail.
Here is an equivalent way to choose a uniform n/2 dimensional subspace:

- First choose a uniform n-1 dimensional subspace, then choose inside it a uniform n-2 dimensional subspace, etc.

Thm 2 shows that at each step we get an extra multiplicative error of $1 \pm n^{-2/3}$. Hence, after n/2 steps, the error becomes $1 \pm n^{1/2} \cdot n^{-2/3} = 1 \pm n^{-1/6}.$

Assuming a normal behavior, this means probability of deviating by more than 1 ± 0.1 is at most $\exp(-n^{1/3})$.

(Actually proving all of this requires a very delicate martingale argument...)

Thm 1 from Thm 2
Proof of Theorem 2

- The proof of Theorem 2 is based on:
 - the Radon transform,
 - spherical harmonics,
 - the hypercontractive inequality on the sphere

- Concentration of measure doesn’t seem to help

- See paper for an analogous statement for the hypercube \(\{0,1\}^n \)
Proof of Thm 2

- **Thm 2**: Let $A \subseteq S^{n-1}$ be an arbitrary set of measure at least $\exp(-n^{1/3})$. Let x be a uniform point in S^{n-1}. Then, the measure of $A \cap x^\perp$ is $1 \pm n^{-1/3}$ that of A except with probability at most $\exp(-n^{1/3})$.

- Equivalently, our goal is to prove that for all $A, B \subseteq S^{n-1}$ of measure at least $\exp(-n^{1/3})$,

$$
E_{x \sim B, y \sim x^\perp} \left[1_{y \in A} \right] \in (1 \pm n^{-1/3}) \mu(A)
$$
Radon Transform

- For a function $f: S^{n-1} \to \mathbb{R}$, define its Radon transform $R(f): S^{n-1} \to \mathbb{R}$ as
 \[R(f)(x) := \mathbb{E}_{y \sim x^\perp} [f(y)] \]
- Define $f = 1_A/\mu(A)$ and $g = 1_B/\mu(B)$
- Then our goal is to prove
 \[\langle g, R(f) \rangle = \mathbb{E}_x [g(x)R(f)(x)] \in 1 \pm n^{-1/3} \]
Spherical Harmonics

- We can decompose $L^2(S^{n-1})$ into orthogonal subspaces S_k known as the spherical harmonics.
- Level $k=0$:
 - constant functions, dimension=1
- Level $k=1$:
 - linear functions (e.g., x_1), dimension=n
- Level $k=2$:
 - quadratic functions, dimension=$(n^2+n-2)/2$, e.g., x_1^2-1/n
- So any function f can be written as $f=f_0+f_1+f_2+...$ and $\langle f, g \rangle = \langle f_0, g_0 \rangle + \langle f_1, g_1 \rangle + \langle f_2, g_2 \rangle + ...$
Spherical Harmonics and Radon

- The subspaces S_k are eigenspaces of the Radon transform.
- The associated eigenvalues λ_k are:
 - $\lambda_0 = 1$, $\lambda_1 = 0$, $\lambda_2 = -1/n$, $\lambda_3 = 0$, $\lambda_4 = 1/n^2$, $\lambda_5 = 0$,
- Hence, our goal is to prove that:
 \[
 \langle R(f), g \rangle = \langle f_0, g_0 \rangle - \frac{1}{n} \langle f_2, g_2 \rangle + \frac{1}{n^2} \langle f_4, g_4 \rangle + \cdots \\
 \leq \frac{1}{n} \|f_2\|_2 \|g_2\|_2
 \]

 \[
 1 \in 1 \pm n^{-1/3}
 \]
- It remains to show that for all sets A of measure at least $\exp(-n^{1/3})$ and $f = 1_A/\mu(A)$,
 \[
 \|f_2\|_2 \leq n^{1/3}
 \]

Similarly...
Bounding the Weight in a Level

- A bit more generally, we will show that for all sets \(A \), \(f = 1_A / \mu(A) \), and \(k \geq 1 \),

\[
\|f_k\|_2 \leq \left(\log \left(\frac{1}{\mu(A)} \right) \right)^{k/2}
\]

- The analogous bound for \(\{0,1\}^n \) was used in [Gavinsky-Kempe-Kerenidis-Raz-deWolf'07]

- This is essentially equivalent to:
 - If \(p \) is a level \(k \) polynomial with \(\|p\|_2 = 1 \),
 \[
 \mathbb{P} \left[p(x) > t \right] \leq \exp \left(-t^{2/k} \right)
 \]
 - Proof of sufficiency:
 \[
 \|f_k\|_2^2 = \langle f_k, f_k \rangle = \langle f, f_k \rangle = \mathbb{E}_{x \in A} [f_k]
 \]
 and so,
 \[
 \|f_k\|_2 = \mathbb{E}_{x \in A} [f_k / \|f_k\|_2]
 \]

- For \(k = 1 \) this is easy (enough to consider \(x_1 \))
 - What about general \(k \)?
The Hypercontractive Inequality

• We prove it is using the hypercontractive inequality for the sphere [Bakry-Émery’85, Rothaus’86, Gross’75,…]
 – Our proof follows [Kahn-Kalai-Linial’88] who worked in \(\{0,1\}^n \)

• It says that for all \(q \) there is a time \(t \) s.t. if \(U_t \) is the heat flow operator for time \(t \), then for any function \(f: S^{n-1} \rightarrow \mathbb{R} \),

\[
\| U_t(f) \|_q \leq \| f \|_2
\]

\(\| f \|_q := \mathbb{E}[|f|^q]^{1/q} \)
The Hypercontractive Inequality

- The subspaces S_k are eigenspaces of U_t, and hence $U_t p = \mu_{t,k} p$ where $\mu_{t,k}$ is the eigenvalue.

- Plugging in the parameters, we get that for any level k polynomial p with $\|p\|_2 = 1$,

$$\|p\|_q \leq q^{k/2} \|p\|_2 = q^{k/2}$$

which implies the desired tail bound by a simple Markov inequality.
Open Questions

• Improve the lower bound to a tight $n^{1/2}$
 • Should be possible using the “smooth rectangle bound” [Klauck10]

• Improve to a functional separation between quantum SMP and classical
 • Seems very challenging, and maybe even impossible?

• What about total functions?