Preparing thermal states of quantum systems by dimension reduction
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Abstract

We present an algorithm that prepares thermal Gibbs states of one dimensional quantum systems
on a quantum computer without any memory overhead, and in a time significantly shorter than
other known alternatives. Specifically, the time complexity is dominated by the quantity NI2I/T
where N is the size of the system, ||h]| is a bound on the operator norm of the local terms of the
Hamiltonian (coupling energy), and T is the temperature. Given other results on the complexity
of thermalization, this overall scaling is likely optimal. For higher dimensions, our algorithm lowers
the known scaling of the time complexity with the dimension of the system by one.

Many open problems in condensed matter physics concern strongly correlated quantum many-body
systems. These are typically not solvable analytically, and we have to resort to numerical simulations.
Unfortunately, numerical methods tend to fail for general hamiltonians on these systems, due to the
exponential scaling of the dimension of the corresponding Hilbert space. This problem is one of the
main motivations for the quest of quantum computers. Indeed, quantum computers can efficiently
simulate unitary evolutions of quantum many-body systems with local interactions [5l [11], because
they can inherently deal with exponentially large Hilbert spaces.

Nevertheless, the preparation of the desired initial state is still a difficult problem in general [9] 8]
12] 1, [15]. There have been several proposals to tackle this problem [17, 16} 4, 14 [18]. Some significant
alternatives have worse complexity scaling than ours [I7, [14], while others apply to a restricted set
of systems [4, I§]. The quantum metropolis algorithm [I6], in particular, might often be faster, but
lacks complexity bounds. The classical algorithm proposed in [6] can be used to prepare 1D quantum
thermal states with only a polynomial time complexity overhead with respect to our method, but its
(classical) memory requirements scale exponentially with inverse temperature, and it does not extend
to higher dimensional systems.

The time complexity of our method for one dimensional systems is dominated by the quantity
NIPI/T  where N is the number of subsystems, T is the temperature, and ||h| is a bound on the
operator norm of the local terms of the Hamiltonian, the interaction strength. Note that this scaling
is polynomial in N. The memory of the quantum computer scales simply with N, an exponential
improvement over general classical algorithms. Our algorithm can also be massively parallelized, and
when run in a cellular automaton architecture the memory scales as NI#I/T but the total time would
be linear in N (the total number of steps would still be the same). In two and higher dimensions, our
method lowers the number of effective dimensions by one. This results in an exponential speedup, but
the exponential scaling with NV remains.

The overall scaling appears to be optimal: the known complexity of thermalizing 1D quantum
systems makes a guaranteed polynomial scaling with temperature highly unlikely [1 [15]. We also
expect the grouping of ||h]|/T in the exponent by dimensional analysis. In other words, the relevant
temperature scale is set by the Hamiltonian.

In our method, we first thermalize small regions, which we merge recursively until we have ther-
malized the whole system. The merging fails with some probaility, but only when the failures are close
to the end of this recursive procedure do we need to rebuild big sections. A careful error analysis shows
that each of these merging operations can be implemented with a cost independent of the system size
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and the quantum correlation length, resulting in a running time that is only polynomial in the system
size and independent of the correlation length. This method trivially generalizes to higher dimensions
and reduces the scaling of the cost with the system dimension by one compared to a direct projection.
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Figure 1: The procedure to thermalize an 8-qubit chain. After thermalizing individual qubits at level
k = 0, we pair them up and merge them by adding the Hamiltonian that connects the two qubits.
This procedure is then repeated recursively as we merge two already thermalized regions of size 2* at
level k to obtain a thermalized chain of size 28! at level k + 1.

We implement the merging perturbatively. Assume that we are given access to copies of p o e A1
(from previous steps). The Hamiltonian H corresponds to the halves to be merged, but the procedure
is more general. We show how to generate (with high probability) the state p(l) o e BH*R) where
h corresponds to the link between the two halves. We then repeat the same process to produce the
sequence

For every transformation in the sequence the success probability is

p=1—eB|h|, (2)

with trace norm error O(e23%||h||?) and cost (evolution time)

O(log(1/(eBI|hl))/(2BIIAI*)) - 3)

The average number of steps until we generate a complete sequence (see Eq. ) without failures
is (m) € Ol Each time that we fail we need to produce two new thermal regions to be
merged. The average number of failures is (o) € O(ePI*l). We analyze the average number of
steps (7(k)) required to prepare a thermalized chain of length 2% at level k (see Fig. . We get
(t(logN)) € O(exp((B]|h]| + log2)logN)). Similarly, the total error is O(NeB?||h||?). If we choose € =
/(N B2||h||?), we get a total error of O(€) in trace-norm. Finally, using Eq. for the evolution time
of each step, we obtain the dominant contribution to the total evolution time ZNZIAI /e

!This is also known from the theory of success runs. We give the average cost, but the tail has an exponential decay
rate, so the worst case cost is similar (see, for instance [2]).



We have presented an algorithm that prepares a thermal state of a 1D quantum system in time
polynomial in the system size and exponential in the inverse temperature (as required by the existence
of QMA-complete ground state problems in 1D). This algorithm can be generalized into D dimensions.
At level k of the recursion, we have built squares (for 2D) or cubes that are now merged. We do not get
polynomial scaling with system size for D > 1 because the intersection of two neighboring regions goes
like NP~1. Note that this is to be expected because there exist 2D ground states with constant gap that
encode the solution to NP-complete problems. A careful analysis confirms that the time complexity is
dominated by the operations at the top level, and the dominating factor is Se? I DN /€. This is
an exponential speedup from the known exp(O(NP?)). The memory requeriments still scale with the
number of sites of the model, N7.

There are also several possible improvements to the scaling of this algorithm. If one is interested in
thermalizing a classical system with a small quantum perturbation one can first solve for the classical
part of the Hamiltonian. Then, one would only need to use projections for the quantum perturbation.
Also, if one is interested in thermalizing a quantum system with short-ranged quantum correlations,
one can also use belief propagation [7, 10} [13], 3] to reduce the storage requirements from O(N) qubits
to O(llog(N)), where [ is a constant related to the quantum correlation length. This can be done
by tracing out parts of the blocks that do not share any entanglement with the boundary to be
merged. The time complexity of the algorithm remains the same as before. Note that the cost (both in
memory and time) of the classical algorithm of quantum belief propagation for 1D quantum systems
is exponential in [ ~ 1/T. This bound is only heuristic, and similar to [6].
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