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LHVM vs Quantum Mechanics

Figure: Alice and Bob measurements. Inputs: x and y , Outputs: a and
b. P(a, b|x , y) is the probability of obtaining the pair (a, b) when Alice
and Bob measure, respectively, with the input x and y .

We deal with (P(a, b|x , y))a,b=1,··· ,K
x ,y=1,··· ,N ∈ RJ(J = N2K 2).
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Probability distributions

Classical probabilities:

P = P(a, b|x , y) =

∫
Ω

Pω(a|x)Qω(b|y)dP(ω),

a) (Ω,P) is a probability space,
b) Pω(a|x) ∈ {0, 1} and

∑K
a=1 Pω(a|x) = 1 for every x , a, ω.

L = {P : P is classical}

Quantum probabilities: P(a, b|x , y) = tr(E a
x ⊗ F b

y ρ),

a) ρ is a density operator acting on H1 ⊗ H2.
b) E a

x ≥ 0 for every x , a and
∑K

a=1 E a
x = 11 for every x (and

analogously for F b
y ).

Q = {P : P is quantum}
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“Distance” between quantum and classical probability
distributions

Given M = {Ma,b
x ,y}N,Kx ,y=1,a,b=1, we define

LV (M) =
sup{|〈M,Q〉| : Q ∈ Q}
sup{|〈M,P〉| : P ∈ L}

=
ω∗(M)

ω(M)
.

Here,

〈M,P〉 =

N,K∑
x ,y ,a,b=1

Ma,b
x ,y P(a, b|x , y).

We can define:
d(L,Q) = sup

M
LV (M).

Note that
d(L,Q) = f (N,K , d).
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Why operator spaces?

* An operator space is defined by

j : E ↪→ B(H) = {T : H → H}.

1- This is what we need to study ω∗(M)
 Difference between operator algebras and operator spaces

2- Equivalently:
Mn ⊗ E , n ≥ 1

LV (M) classical theory vs non-commutative theory
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Maximally entangled state

A nice construction

Let n ∈ N. Consider εkx ,a = ±1 with x , a, k = 1, · · · , n and define

ua
x = (1, ε1

x ,a, · · · , εnx ,a) ∈ Rn+1 for every x , a = 1, · · · , n.

a) Bell inequality coefficients:

Ma,b
x ,y =

{
1
n2

(
〈ua

x , u
b
y 〉 − 1

)
x , y , a, b = 1, · · · , n

0 a = n + 1 or b = n + 1 .

b) POVMs measurements: {E a
x }

n,n+1
x ,a=1 in Mn+1: For x = 1, · · · , n

E a
x =

{
|ũa

x〉〈ũa
x | for a = 1, · · · , n ,

1−
∑n

a=1 E a
x for a = n + 1 .

Here ũa
x = 1√

nK
ua
x for certain universal constant K .
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Main result

Theorem

For every n ∈ N the following hold “with high probability”:

1) sup{|〈M,P〉| : P ∈ L} � log n.

2) For any (diagonal) pure state |ψ〉 =
∑n+1

i=1 αi |ii〉 we have

|〈M,Q|ψ〉〉| � α1(
n+1∑
i=2

αi ),

where Q|ψ〉(a, b|x , y) = 〈ψ|E a
x ⊗ Eb

y |ψ〉, x , y , a, b = 1, · · · , n.

Taking |ϕα〉 = α|11〉+
√

1−α2√
n

∑n+1
i=2 |ii〉 ∈ `

n+1
2 ⊗ `n+1

2 we have

LV (M) � α
√

1− α2

√
n

log n
.
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Consequence I:Large violation of Bell Inequalities

Theorem

d(L,Q) = f (N,K , d) � min{N,K , d}

The previous theorem showed

Theorem

f (n, n, n) �
√

n
log n .

In the previous talk the authors showed

Theorem (Buhrman, Regev, Scarpa, de Wolf)

f ( 2n

n , n, n) � n
(log n)2 .
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Consequence II: Violation and quantum entanglement

Theorem

For any δ > 0 we can find a n-dimensional pure state |ψδ〉 in a
high enough dimension n verifying:

a) E(|ϕ〉) < δ
(
resp. log2(n)− E(|ϕ〉) < δ

)
,

b)
|〈M,Q|ψδ〉〉|

supP∈L |〈M,P〉|
�

√
n

(log n)2
,

where Q|ψδ〉(a, b|x , y) = 〈ψδ|E a
x ⊗ Eb

y |ψδ〉 for x , y , a, b = 1, · · · , n.

Even though quantum entanglement is needed to obtain violation
of Bell inequalities, the amount of entanglement is essentially
irrelevant for large violations.
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Limitations of the maximally entangled state

Theorem

There is a Bell inequalities M with 2n2
inputs and n outputs s.t.

a)

LVn(M) =
sup{|〈M,Q〉| : Q ∈ Qn}
sup{|〈M,P〉| : P ∈ L}

�
√

n

log n
,

b) sup{|〈M,Q〉| : Q ∈ Qmax} ≤ 1, where Qmax is the set of
quantum probability distributions constructed with the maximally
entangled state in any dimension.

1) There exist quantum probability distributions which cannot be
written by using any maximally entangled state.

2) “Opposite” result to the main one in the previous talk.
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THANK YOU VERY MUCH FOR YOUR ATTENTION
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