Large violation of Bell inequalities with low entanglement

Carlos Palazuelos (Joint work with M. Junge)

University of Illinois at Urbana-Champaign, USA

January 11, 2011

14th workshop on Quantum Information Processing Singapore, 2011.

LHVM vs Quantum Mechanics

Figure: Alice and Bob measurements. Inputs: x and y, Outputs: a and b. P(a, b|x, y) is the probability of obtaining the pair (a, b) when Alice and Bob measure, respectively, with the input x and y.

We deal with
$$(P(a, b|x, y))_{x,y=1,\dots,N}^{a,b=1,\dots,K} \in \mathbb{R}^J (J = N^2 K^2)$$
.

Probability distributions

Classical probabilities:

$$P = P(a, b|x, y) = \int_{\Omega} P_{\omega}(a|x)Q_{\omega}(b|y)d\mathbb{P}(\omega),$$

- a) (Ω, P) is a probability space,
- b) $P_{\omega}(a|x) \in \{0,1\}$ and $\sum_{a=1}^{K} P_{\omega}(a|x) = 1$ for every x, a, ω .

$$\mathcal{L} = \{P : P \text{ is classical}\}$$

Probability distributions

Classical probabilities:

$$P=P(a,b|x,y)=\int_{\Omega}P_{\omega}(a|x)Q_{\omega}(b|y)d\mathbb{P}(\omega),$$

- a) (Ω, P) is a probability space,
- b) $P_{\omega}(a|x) \in \{0,1\}$ and $\sum_{a=1}^{K} P_{\omega}(a|x) = 1$ for every x, a, ω .

$$\mathcal{L} = \{P : P \text{ is classical}\}$$

Quantum probabilities: $P(a, b|x, y) = tr(E_x^a \otimes F_y^b \rho),$

- a) ρ is a density operator acting on $H_1 \otimes H_2$.
- b) $E_x^a \ge 0$ for every x, a and $\sum_{a=1}^K E_x^a = 1$ for every x (and analogously for F_v^b).

$$\mathcal{Q} = \{P : P \text{ is quantum}\}$$

"Distance" between quantum and classical probability distributions

Given $M = \{M_{x,y}^{a,b}\}_{x,y=1,a,b=1}^{N,K}$, we define

$$LV(M) = \frac{\sup\{|\langle M, Q \rangle| : Q \in \mathcal{Q}\}}{\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\}} = \frac{\omega^*(M)}{\omega(M)}.$$

Here,

$$\langle M, P \rangle = \sum_{x,y,a,b=1}^{N,K} M_{x,y}^{a,b} P(a,b|x,y).$$

"Distance" between quantum and classical probability distributions

Given $M = \{M_{x,y}^{a,b}\}_{x,y=1,a,b=1}^{N,K}$, we define

$$LV(M) = \frac{\sup\{|\langle M, Q \rangle| : Q \in \mathcal{Q}\}}{\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\}} = \frac{\omega^*(M)}{\omega(M)}.$$

Here,

$$\langle M, P \rangle = \sum_{x,y,a,b=1}^{N,K} M_{x,y}^{a,b} P(a,b|x,y).$$

We can define:

$$d(\mathcal{L},\mathcal{Q}) = \sup_{M} LV(M).$$

"Distance" between quantum and classical probability distributions

Given $M = \{M_{x,y}^{a,b}\}_{x,y=1,a,b=1}^{N,K}$, we define

$$LV(M) = \frac{\sup\{|\langle M, Q \rangle| : Q \in \mathcal{Q}\}}{\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\}} = \frac{\omega^*(M)}{\omega(M)}.$$

Here,

$$\langle M, P \rangle = \sum_{x,y,a,b=1}^{N,K} M_{x,y}^{a,b} P(a,b|x,y).$$

We can define:

$$d(\mathcal{L},\mathcal{Q}) = \sup_{M} LV(M).$$

Note that

$$d(\mathcal{L}, \mathcal{Q}) = f(N, K, d).$$

Why operator spaces?

Why operator spaces?

* An operator space is defined by

$$j: E \hookrightarrow B(H) = \{T: H \to H\}.$$

Why operator spaces?

* An operator space is defined by

$$j: E \hookrightarrow B(H) = \{T: H \rightarrow H\}.$$

- 1- This is what we need to study $\omega^*(M)$ \leadsto Difference between *operator algebras* and *operator spaces*
- 2- Equivalently:

$$M_n \otimes E$$
, $n \geq 1$

 $LV(M) \rightsquigarrow$ classical theory vs non-commutative theory

A nice construction

Let
$$n \in \mathbb{N}$$
. Consider $\epsilon_{x,a}^k = \pm 1$ with $x, a, k = 1, \dots, n$ and define $u_x^a = (1, \epsilon_{x,a}^1, \dots, \epsilon_{x,a}^n) \in \mathbb{R}^{n+1}$ for every $x, a = 1, \dots, n$.

A nice construction

Let $n \in \mathbb{N}$. Consider $\epsilon_{x,a}^k = \pm 1$ with $x, a, k = 1, \dots, n$ and define $u_x^a = (1, \epsilon_{x,a}^1, \dots, \epsilon_{x,a}^n) \in \mathbb{R}^{n+1}$ for every $x, a = 1, \dots, n$.

a) Bell inequality coefficients:

$$M_{x,y}^{a,b} = egin{cases} rac{1}{n^2} \left(\langle u_x^a, u_y^b
angle - 1
ight) & x, y, a, b = 1, \cdots, n \\ 0 & a = n+1 \text{ or } b = n+1 \,. \end{cases}$$

A nice construction

Let $n \in \mathbb{N}$. Consider $\epsilon_{x,a}^k = \pm 1$ with $x, a, k = 1, \dots, n$ and define $u_x^a = (1, \epsilon_{x,a}^1, \dots, \epsilon_{x,a}^n) \in \mathbb{R}^{n+1}$ for every $x, a = 1, \dots, n$.

a) Bell inequality coefficients:

$$M_{x,y}^{a,b} = \begin{cases} \frac{1}{n^2} \left(\langle u_x^a, u_y^b \rangle - 1 \right) & x, y, a, b = 1, \cdots, n \\ 0 & a = n+1 \text{ or } b = n+1. \end{cases}$$

b) POVMs measurements: $\{E_x^a\}_{x,a=1}^{n,n+1}$ in M_{n+1} : For $x=1,\dots,n$

$$E_{\mathbf{x}}^{\mathbf{a}} = egin{cases} |\tilde{u}_{\mathbf{x}}^{\mathbf{a}}
angle \langle \tilde{u}_{\mathbf{x}}^{\mathbf{a}}| & \text{for } \mathbf{a} = 1,\cdots,n\,, \\ 1 - \sum_{a=1}^{n} E_{\mathbf{x}}^{\mathbf{a}} & \text{for } \mathbf{a} = n+1\,. \end{cases}$$

Here $\tilde{u}_x^a = \frac{1}{\sqrt{nK}} u_x^a$ for certain universal constant K.

Theorem

For every $n \in \mathbb{N}$ the following hold "with high probability":

Theorem

For every $n \in \mathbb{N}$ the following hold "with high probability":

1) $\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\} \leq \log n$.

Theorem

For every $n \in \mathbb{N}$ the following hold "with high probability":

- 1) $\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\} \leq \log n$.
- 2) For any (diagonal) pure state $|\psi\rangle = \sum_{i=1}^{n+1} \alpha_i |ii\rangle$ we have

$$|\langle M, Q_{|\psi\rangle}\rangle| \succeq \alpha_1(\sum_{i=2}^{n+1} \alpha_i),$$

where
$$Q_{|\psi\rangle}(a,b|x,y)=\langle\psi|E_x^a\otimes E_y^b|\psi\rangle$$
, $x,y,a,b=1,\cdots,n$.

Theorem

For every $n \in \mathbb{N}$ the following hold "with high probability":

- 1) $\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\} \leq \log n$.
- 2) For any (diagonal) pure state $|\psi\rangle = \sum_{i=1}^{n+1} \alpha_i |ii\rangle$ we have

$$|\langle M, Q_{|\psi\rangle}\rangle| \succeq \alpha_1(\sum_{i=2}^{n+1} \alpha_i),$$

where $Q_{|\psi\rangle}(a,b|x,y)=\langle\psi|E_x^a\otimes E_y^b|\psi\rangle$, $x,y,a,b=1,\cdots,n$.

Taking
$$|\varphi_{\alpha}\rangle=\alpha|11\rangle+rac{\sqrt{1-lpha^2}}{\sqrt{n}}\sum_{i=2}^{n+1}|\emph{ii}\rangle\in\ell_2^{n+1}\otimes\ell_2^{n+1}$$
 we have

$$LV(M) \succeq \alpha \sqrt{1 - \alpha^2} \frac{\sqrt{n}}{\log n}.$$

Consequence I:Large violation of Bell Inequalities

Theorem

$$d(\mathcal{L},\mathcal{Q}) = f(N,K,d) \leq \min\{N,K,d\}$$

Consequence I:Large violation of Bell Inequalities

Theorem

$$d(\mathcal{L}, \mathcal{Q}) = f(N, K, d) \leq \min\{N, K, d\}$$

The previous theorem showed

Theorem

$$f(n, n, n) \succeq \frac{\sqrt{n}}{\log n}$$
.

Consequence I:Large violation of Bell Inequalities

Theorem

$$d(\mathcal{L}, \mathcal{Q}) = f(N, K, d) \leq \min\{N, K, d\}$$

The previous theorem showed

Theorem

$$f(n, n, n) \succeq \frac{\sqrt{n}}{\log n}$$
.

In the previous talk the authors showed

Theorem (Buhrman, Regev, Scarpa, de Wolf)

$$f(\frac{2^n}{n}, n, n) \succeq \frac{n}{(\log n)^2}$$
.

Consequence II: Violation and quantum entanglement

Consequence II: Violation and quantum entanglement

Theorem

For any $\delta > 0$ we can find a *n*-dimensional pure state $|\psi_{\delta}\rangle$ in a high enough dimension *n* verifying:

a)
$$\mathcal{E}(|\varphi\rangle) < \delta$$
 (resp. $\log_2(n) - \mathcal{E}(|\varphi\rangle) < \delta$),

$$\frac{|\langle M, Q_{|\psi_\delta\rangle}\rangle|}{\sup_{P\in\mathcal{L}}|\langle M, P\rangle|}\succeq \frac{\sqrt{n}}{(\log n)^2},$$

where
$$Q_{|\psi_\delta\rangle}(\textbf{\textit{a}},\textbf{\textit{b}}|\textbf{\textit{x}},\textbf{\textit{y}}) = \langle \psi_\delta|E^{\textbf{\textit{a}}}_\textbf{\textit{x}}\otimes E^{\textbf{\textit{b}}}_\textbf{\textit{y}}|\psi_\delta\rangle$$
 for $\textbf{\textit{x}},\textbf{\textit{y}},\textbf{\textit{a}},\textbf{\textit{b}}=1,\cdots,\textbf{\textit{n}}.$

Consequence II: Violation and quantum entanglement

Theorem

For any $\delta > 0$ we can find a *n*-dimensional pure state $|\psi_{\delta}\rangle$ in a high enough dimension *n* verifying:

a)
$$\mathcal{E}(|\varphi\rangle) < \delta$$
 (resp. $\log_2(n) - \mathcal{E}(|\varphi\rangle) < \delta$),

$$\frac{|\langle M, Q_{|\psi_\delta\rangle}\rangle|}{\sup_{P\in\mathcal{L}}|\langle M, P\rangle|}\succeq \frac{\sqrt{n}}{(\log n)^2},$$

where
$$Q_{|\psi_\delta\rangle}(a,b|x,y)=\langle\psi_\delta|E^a_x\otimes E^b_y|\psi_\delta
angle$$
 for $x,y,a,b=1,\cdots,n$.

Even though quantum entanglement is needed to obtain violation of Bell inequalities, the amount of entanglement is essentially irrelevant for large violations.

Theorem

There is a Bell inequalities M with 2^{n^2} inputs and n outputs s.t. a)

$$LV_n(M) = \frac{\sup\{|\langle M, Q \rangle| : Q \in \mathcal{Q}_n\}}{\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\}} \succeq \frac{\sqrt{n}}{\log n},$$

b) $\sup\{|\langle M,Q\rangle|:Q\in\mathcal{Q}_{max}\}\leq 1$, where \mathcal{Q}_{max} is the set of quantum probability distributions constructed with the maximally entangled state in *any* dimension.

Theorem

There is a Bell inequalities M with 2^{n^2} inputs and n outputs s.t. a)

$$LV_n(M) = \frac{\sup\{|\langle M, Q \rangle| : Q \in \mathcal{Q}_n\}}{\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\}} \succeq \frac{\sqrt{n}}{\log n},$$

- b) $\sup\{|\langle M,Q\rangle|:Q\in\mathcal{Q}_{max}\}\leq 1$, where \mathcal{Q}_{max} is the set of quantum probability distributions constructed with the maximally entangled state in *any* dimension.
 - 1) There exist quantum probability distributions which cannot be written by using *any* maximally entangled state.

$\mathsf{Theorem}$

There is a Bell inequalities M with 2^{n^2} inputs and n outputs s.t. a)

$$LV_n(M) = \frac{\sup\{|\langle M, Q \rangle| : Q \in \mathcal{Q}_n\}}{\sup\{|\langle M, P \rangle| : P \in \mathcal{L}\}} \succeq \frac{\sqrt{n}}{\log n},$$

- b) $\sup\{|\langle M,Q\rangle|:Q\in\mathcal{Q}_{max}\}\leq 1$, where \mathcal{Q}_{max} is the set of quantum probability distributions constructed with the maximally entangled state in *any* dimension.
 - 1) There exist quantum probability distributions which cannot be written by using *any* maximally entangled state.
 - 2) "Opposite" result to the main one in the previous talk.

THANK YOU VERY MUCH FOR YOUR ATTENTION