Pseudorandom Generators and the BQP vs PH Problem

Bill Fefferman (IQI, Caltech)

Joint with Chris Umans
How (classically) powerful are quantum computers?

- **BQP** – Class of languages that can be decided efficiently by a quantum computer

- Where is **BQP** relative to **NP**?
 - Is there a problem that can be solved with a quantum computer that can’t be verified classically (**BQP ⊄ NP**?)
 - Can we give evidence?
 - Oracle separations
Is $\text{BQP} \not\subseteq \text{PH}$?

- History: Towards stronger oracle separations
 - [Bernstein & Vazirani ‘93]
 - Recursive Fourier Sampling?
 - [Aaronson ‘09]
 - Conjecture: “Fourier Checking” not in PH
 - Assuming GLN
 - [Aaronson ‘10] (counterexample!)
 - GLN false (depth 3)

- Why is it so hard?
 - Cannot rely on crude arguments about low degree approximating polynomials (both classes have such approximations... see [RS ’87], [Beals et al ’01])
Today: A new approach

• Show oracle separation would follow from question studied in “pseudorandomness” literature [BSW ’03]
• Under conjecture, quantum computers can break instantiation of the famous “Nisan-Wigderson” generator [NW ’94]
• Unconditionally, gives another example of exponential quantum speedup over randomized classical computation
What can’t PH^0 do?

- Essentially equivalent to: what can’t AC^0 do?
 - AC^0 is constant depth, AND-OR-NOT circuits of (polynomial size) and unbounded fanin
 - Idea: In circuit, \exists becomes OR, \forall becomes AND and oracle string an input of exponential length

$$\exists \pi_1 \forall \pi_2, \ldots, Q_k \pi_k \; V_L^O (x, \pi_1, \pi_2, \ldots, \pi_k) = 1$$
Equivalent Setup

• want a function $f : \{0, 1\}^N \mapsto \{0, 1\}$
 – in BQLOGTIME
 • $O(\log N)$ quantum steps
 • random access to N-bit input: $|i\rangle|z\rangle \mapsto |i\rangle|z \oplus f(i)\rangle$
 • accept with high probability iff $f(\text{input}) = 1$

 – but not in AC_0
Equivalent Setup

• More general (and transformable to previous setting):
 – two distributions on N bit strings D_1, D_2
 – BQLOGTIME algorithm that distinguishes them
 – proof that AC_0 cannot distinguish them
 – we will always take D_2 to be uniform
What can’t \textbf{AC}_0 do?

- PARITY and MAJORITY not in \textbf{AC}_0 [FSS ’84]
- \textbf{AC}_0 circuits can’t distinguish:
 1. Bits distributed uniformly
 2. Bits drawn from “Nisan-Wigderson” distribution derived from:
 1. function hard (on average) for \textbf{AC}_0 to compute
 2. Nearly-disjoint “subset system”

 - Our result: There exists a specific choice of these subsets, for which the resulting distribution generated by the MAJORITY function can be distinguished (from uniform) quantumly!
Formal: Nisan-Wigderson PRG

• $S_1, S_2, \ldots, S_M \subseteq [N]$ is an (N', p)-design if

 – for all i, $|S_i| = N'$
 – for all $i \neq j$, $|S_i \cap S_j| \leq p$
Nisan-Wigderson PRG

- $f: \{0,1\}^{N'} \rightarrow \{0,1\}$ is a hard function (e.g., MAJORITY)
- $S_1, \ldots, S_M \subset [N]$ is an (N', p)-design

$$G(x) = x \circ f(x_{|S_1}) \circ f(x_{|S_2}) \circ \ldots \circ f(x_{|S_M})$$

Truth table of f:

```
010100101111101010111001010
```

Seed $x \in \{0,1\}^N$
Proof of Classical Hardness:

Indistinguishability

- Proof by contradiction:
 - assume circuit C distinguishes from uniform:
 \[
 |\Pr[C(U_{N+M}) = 1] - \Pr[C(G(U_N))] = 1]| > \varepsilon
 \]

 - transform C into a *predictor* circuit P
 \[
 \Pr_{x \sim U}[P(G(x)_1\ldots_i-1) = G(x)_i] > \frac{1}{2} + \frac{\varepsilon}{M}
 \]

 - derive similar sized circuit approximating hard function (using properties of subset system)

 - Contradiction (assuming hard function cannot be approximated this well)
Distributions distinguishable from Uniform with a quantum computer

\[D_A = (x, y) \colon \text{pick } x \text{ uniformly from } \{1, -1\}^N, \text{ set } y_i = \text{sgn}((Ax)_i) \]

- Goal: Matrix A with rows that
 1. Have large support
 2. Have supports with small pairwise intersection (form some \((N', p)\)-design)
 3. Are pairwise orthogonal
 4. Should be an efficient quantum circuit (product of \(\text{polylog}(N)\) local unitaries)
Quantum Algorithm

• We claim there is a quantum algorithm to distinguish D_A from U_{2N}

• Quantum algorithm:

1. enter uniform superposition over log N qubits
2. query x and multiply into phases: $\sum_i x_i |i>$
3. apply A: $\sum_i (Ax)_i |i>$
4. query y and multiply into phases: $\sum_i y_i(Ax)_i |i>$
5. measure in Hadamard basis, accept iff $(0,0,...,0)$

• Crucially, after step 4 we are back to all positive amplitudes in case oracle is D_A

• But in case oracle is U_{2N} with high prob. we have random mix of signs (low weight on $|0...,0>$ after final Hadamard)
Constructing A using “Paired-Lines”

- Will describe $N/2$ pairwise-orthogonal vectors in $\{0, \pm 1\}^N$
- Identify N with the affine plane $\mathbb{F}_{\sqrt{N}} \times \mathbb{F}_{\sqrt{N}}$
- Let B_1, B_2 be an equipartition of $\mathbb{F}_{\sqrt{N}}$
- Take some $\phi : B_1 \rightarrow B_2$ (an arbitrary bijection). Then the vectors are:

$$v_{a,b}[x, y] = \begin{cases}
-1 & y = ax + b \\
+1 & y = ax + \phi(b) \\
0 & \text{otherwise}
\end{cases}$$
Construction

- Each row will be $v_{a,b}$ (supported on two parallel, “paired-lines” with slope a)
- Identify columns with affine plane $\mathbb{F}_{\sqrt{N}} \times \mathbb{F}_{\sqrt{N}}$

- \sqrt{N} parallel line classes
- \sqrt{N} lines in each class
- $N/2$ rows

\[
\begin{array}{cccccccc}
+ & + & + & - & - & - & + & + \\
+ & - & + & - & - & + & - & + \\
+ & + & - & + & - & + & - & +
\end{array}
\]
Construction

• Each row will be $v_{a,b}$ (supported on two parallel, “paired-lines” with slope a)

• Identify columns with affine plane $F_{\sqrt{N}} \times F_{\sqrt{N}}$

Note that support of each row has at most 4 intersections with any other, and these contribute 0 to the inner product (and thus orthogonal)
Putting it all together

• “Technical Core”: We construct an efficient quantum circuit realized by unitary whose (un-normalized) rows are vectors from a paired-lines construction wrt a specific bijection
 – $N \times N$
 – Half of the rows will correspond to the paired-lines vectors

• Note that we have a quantum algorithm, as described before, that uses this unitary A to distinguish between D_A and U_{2N}

• But distinguishing should be hard for AC_0 since Ax is instantiation of NW generator!
But why aren’t we finished?

• Distribution on \((3/2)N\) bits that is the NW generator w.r.t. MAJORITY on \(N^{1/2}\) bits, with output length \(N/2\)

• Suppose \(\text{AC}_0\) can distinguish from uniform with constant gap \(\varepsilon\)
 – proof: distinguisher to predictor, and then circuit for majority w/ success \(1/2 + \varepsilon/(N/2)\)
 – but already possible w/ success \(1/2 + \Omega(1/N^{1/4})\)
 … no contradiction
Our Conjecture

• Distribution on $\frac{3}{2}N$ bits that is the NW generator w.r.t. MAJORITY on $N^{1/2}$ bits, with output length $N/2$

• Can \mathbf{AC}_0 can distinguish from uniform with constant gap ϵ?

Conjecture: No.
Recent new work [with Shaltiel, Umans & Viola]

• (Non-trivial) simplification of conjecture:
 – Take M completely disjoint subsets
 – Distinguish:
 1. All bits distributed uniformly
 2. First half bits are uniform, second are majorities over disjoint subsets of first half
 – This is indeed hard for AC_0!
Conclusions

• Assuming conjecture, gives a quantum algorithm that can “break” a PRG

• Unitaries used are novel and don’t seem to resemble those used in other quantum algorithms

• Conjecture implies oracle relative to which BQP is not in PH