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How many measurement settings or outcomes are necessary in order to identify a quantum system which is
constrained by prior information? We show that if the latter restricts the system to a set of lower dimensionality,
then topological obstructions can increase the required number of outcomes (or binary settings) by a factor of
two over the number of real parameters needed to characterize the system. Conversely, almost every measure-
ment becomes informationally complete with respect to the constrained set if the number of outcomes exceeds
twice the Minkowski dimension of the set.

We provide a general analysis of topological implications in quantum tomography and apply the ideas to
determine the minimal cardinalities of measurements which are informationally complete w.r.t arbitrary rank
constraints. Explicit constructions for such measurements are given.

Quantum tomography aims at identifying quantum sys-
tems. In order to achieve this, we use measurement data typ-
ically supplemented by prior information. In this work we
consider cases where prior information effectively reduces the
dimensionality, i.e., the number of parameters which are nec-
essary to characterize the state of a system. Physically, one
may think of scenarios of interferometry, process tomogra-
phy or parameter estimation, where one prepares the initial
state which then evolves depending on a certain number of un-
known parameters before one measures the final system. Ef-
fective reductions of the number of parameters can also be due
to a constraining symmetry or fixed energy or particle number.

We are interested in identifying the state by using as little
measurement data as possible. Clearly, if states in the con-
sidered set are parameterized by a number, say dM, of inde-
pendent real parameters, then we need at least this number of
measurement outcomes or binary measurements in order to
pinpoint the state. As an example take the manifold of pure
states in a d-dimensional Hilbert space. Their description re-
quires 2d−2 real parameters, as opposed to d2−1 real param-
eters needed to describe an arbitrary density matrix. So if we
want to determine a pure state by a single measurement with
m outcomes (or, equivalently, m binary measurements), how
large has m to be? Is m ∼ 2d sufficient as counting parame-
ters suggests, or do we need m ∼ d2 since after all the set of
pure state density matrices spans the entire state space? This
particular question has been addressed in a number of publi-
cations [Wei92, AW99, FSC05], but the answer regarding the
optimal scaling of m has remained somewhat elusive, so far.

A related problem has been addressed based on compressed
sensing ideas, where it has been shown [GLF+10] that for
d × d density matrices of rank r, m = O(dr log(d)2) binary
measurements are sufficient in order to identify the state with
high probability. In this light we emphasize that our focus lies
on schemes which identify the system unambiguously and de-
terministically. We should also stress that in all discussed sce-
narios “measurement” always refers to a statistical experiment
rather than to a single-shot experiment.

The present work contains two complementary parts. The
first one, discussed in Sec.I, is based on the observation that
any measurement which is informationally complete when
supplemented by prior information is a mapping into the space

of measurement outcomes which preserves topological invari-
ants. Together with linearity of quantum mechanics this im-
poses non-trivial constraints on the minimal number of mea-
surement settings or outcomes which are needed to complete
the prior information. This point of view enables us for in-
stance to show that for pure states any informational complete
measurement requires m ∼ 4d up to an additive logarithmic
correction.

In the second part, discussed in Sec.II, we then provide up-
per bounds on the required number of measurement settings
or outcomes. We show that if the number of settings or out-
comes exceeds twice the Minkowski dimension of the set con-
sistent with prior information, then almost every measurement
will suffice to ultimately identify the system unambiguously.
We will then provide explicit constructions of measurement
schemes which in particular show that the above mentioned
m ∼ 4d scaling for pure states, and more generally m ∼ 4dr
for states with rank bounded by r, can indeed be achieved.
Technical proofs are given in an appendix.

I. TOMOGRAPHY FROM A TOPOLOGICAL
PERSPECTIVE

Tomography preserves topology. Let M ∈ Cd×d be a
manifold in the set of d × d density matrices. Examples of
manifolds are the set of density matrices of fixed rank[Dit95],
states with given spectrum or other unitary orbits such as those
arising in interferometry or parameter estimation schemes.

We will write dM for the real dimension of the manifold
and think ofM as the set of density matrices constrained by
prior information, and dM ≤ d2 − 1 the number of real pa-
rameters which are required for characterizing an element in
M. 1

We will consider two related ways of identifying a state
ρ ∈ M by measurements: (i) we perform a single measure-
ment (POVM) with, say m + 1, outcomes from whose prob-

1 Of course, we may need an extra discrete parameter, which enumerates the
charts. The number of the latter is however finite for any compact manifold.
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FIG. 1: A mapping from the sphere in R3 to the plane R2 is ei-
ther (a) not injective, i.e., it identifies initially different points, or (b)
not continuous. When regarding the sphere as the manifold of pure
qubit states and the mapping as a measurement with 3 outcomes (of
which only two can have independent probabilities), this simple pic-
ture implies that a pure state informationally complete (=injective)
measurement requires 4 outcomes.

abilities we want to determine ρ, or alternatively (ii) we per-
form m different measurements and use their expectation val-
ues in order to identify ρ. Both scenarios can yield m inde-
pendent real numbers so that we can view them as a mapping
h :M→ R

m from the initial manifold into Euclidean space.
In mathematical terms, we get

h(ρ)i = tr [ρAi] , i = 1, . . . ,m, (1)

where the Ai’s are Hermitian matrices which, in scenario
(i), have to satisfy the additional constraints Ai ≥ 0 and∑m
i=1Ai ≤ 1. Since the two scenarios can be treated on the

same footing, we will often not distinguish between them and
just talk about measurement schemes, meaning either of them.
If h allows to identify any state ρ ∈ M unambiguously, we
will call the scheme informational complete (w.r.t.M) mean-
ing that for any pair ρ1, ρ2 ∈ M : h(ρ1) = h(ρ2) implies
that ρ1 = ρ2, i.e., h is injective. Note that the two described
scenarios are mathematically equivalent in the sense that m
Hermitian operators can always be transformed into POVM
elements via Ai 7→ A′i = αAi + β1 for suitable α, β ∈ R so
that informational completeness is preserved. 2

The crucial point is now that a measurement scheme is in-
formationally complete if and only if h is a topological em-
bedding, i.e., it preserves topological properties. The latter
means that h is (a) injective, (b) continuous, and (c) has a
continuous inverse on its image. While (a) is indeed a re-
formulation of “informational completeness”, (b) and (c) are
consequences of the linearity of the measurement process (see
Prop.1 for details).

Hence, for m to admit an informationally complete mea-
surement scheme, it is necessary that there exists a topological
embeddingM → R

m. This, however, depends not only on
the dimension dM of the manifold but also on its topological
invariants.

2 Another transformation of interest is orthonormalization in the space
of Hermitian matrices, i.e., the fact that we can always assure that
tr [AiAj ] = δij in case of scenario (ii).

FIG. 2: The Roman surface is a self-intersecting surface in R3 ob-
tained by a mapping from the real projective plane RP2. In our con-
text it arises when the manifold of three-dimensional real, pure states
is mapped onto the expectation values of three σx-type observables.
Since the manifold is not orientable, every three-outcome measure-
ment has to be non-injective—here reflected by the self-intersections
of the surface.

Example—pure qubit states: Consider the unit sphere in
R

3 which may represent the manifold of pure qubit states on
the Bloch sphere (see Fig.1). Take any measurement with 3
outcomes leading to a vector of probabilities in R3. Since
probabilities have to sum up to one, all information is al-
ready contained in the first 2 components, so the measurement
may effectively be regarded as a map from the sphere into the
plane R2. For a measurement which is informationally com-
plete different initial states (=points on the sphere) must not be
mapped onto the same final point. Due to linearity of quan-
tum mechanics a discontinuous mapping (option (b) in Fig.1)
cannot arise from a measurement. Every continuous map into
the plane, however, necessarily identifies different points of
the sphere ((a) in Fig.1). Consequently, there cannot be a
pure state informationally complete measurement with 3 out-
comes. More precisely:

Example 1 (Pure qubit states) Let M be the manifold of
pure qubit states and h :M→ R

m with h(ρ)i = tr [ρ⊗nAi]
corresponding to a measurement scheme. The latter is infor-
mationally complete w.r.t. M iff it is so for all qubit density
matrices. Moreover, ifm = 2 then there exist orthogonal pure
states ψ and φ such that h(ψ) = h(φ).

The last statement is an application of the Borsuk-Ulam theo-
rem. The following example requires even more measurement
outcomes despite dM = 2.

Example—pure states in R3: Consider now M as the
manifold of pure states in C3 with real amplitudes, i.e., |ψ〉 =∑3
i=1 xi|i〉 with x ∈ R3. Due to normalization every such

state can be represented by a unit vector x ∈ S2. Since x and
−x, however, represent the same state, we have to identify an-
tipodes so thatM = RP2 becomes the real projective plane.
The latter is known to be a non-orientable 2-manifold so that



3

there is no topological embedding in R3. In fact, all closed
non-orientable surfaces (i.e., topological 2-manifolds) without
boundary cannot be embedded in R3, but they do embed into
R4. In our context, the map x 7→ (x1x2, x2x3, x3x1, x

2
1−x22)

is an embedding of RP2 in R4 which can be realized by a
measurement scheme: the first three components can be ob-
tained by σx-type measurements and the fourth via a σz-type
measurement. Hence we obtain:

Example 2 (Pure states in R3) Let M be the manifold of
pure states inR3 and h :M→ R

m with h(ρ)i = tr [ρ⊗nAi]
corresponding to a measurement scheme. Then informational
completeness requires m ≥ 4 and m = 4 can be achieved
already for n = 1.

For m = 3 and n = 1 a measurement of the three σx-type
operators gives rise to the Roman surface displayed in Fig.2.
The failure of informational completeness is reflected by self-
intersections of the surface.

Obstructions from differential topology. Manifolds of
interest in quantum tomography often arise from unitary or-
bits, so that they have a differentiable structure—they are
smooth manifolds [Lee02]. In such a case we may resort to
differential topology which imposes more restrictive condi-
tions on the existence of smooth embeddings. Before we apply
these to the concrete cases of pure states and states with gen-
eral rank constraints we provide some general background:

Although for most smooth manifolds the minimal embed-
ding dimension m is not known exactly, quite narrow inter-
vals have been determined for many cases of interest (see
[Jam71, Ada93] for an overview). One tool to derive lower
bounds on the minimal m is Chern’s result [Che48] that a
smooth embedding into Rm requires that the dual Stiefel-
Whitney classes vanish W̄ (M)i = 0 for all i ≥ m −
dM. Other bounds can be obtained from an index theorem
due to Atiyah and Hirzebruch [AH59] and similar ideas in
[May65, Sug79]. On the positive side a general upper bound
is due to Whitney [Whi44] who showed that a smooth em-
bedding M → R

m always exists if m ≥ 2dM (actually
m ≥ 2dM − 1 unless m is a power of 2). Whitney’s bound
is known to be optimal, i.e., in the worst case the dimension
of the Euclidean space has to be twice the dimension of the
manifold.

In order to apply lower bounds on dimensions for smooth
embeddings to tomography we have as before to show that any
informational complete h preserves topological properties—
but now in the smooth category, i.e., such that M is diffeo-
morphic to its image. This appears to be more subtle as before
and we postpone the proof which covers the cases discussed
below to Prop.1 in the appendix.

Obstructions on states with flat spectrum. We will now
generalize the qubit example to pure states of arbitrary dimen-
sion. The manifold of pure states in Cd can be identified with
the complex projective space CPd−1 which has real dimen-
sion dM = 2d− 2. The map from CPd−1 to Hermitian rank-
one projections is itself a smooth embedding. This, together
with Prop.1 implies that non-embedding results for CPd−1
equally apply to the tomography of pure quantum states. The
probably best non-embedding result in this case can be found

m

d

FIG. 3: Upper and lower bound for the minimal numberm for which
informational completeness for pure states in Cd can be achieved.
Note that the bounds coincide for d < 8 and that they differ by at
most 2 until d = 30.

in [May65] which states that an embedding CPd−1 → R
m

requires

m >

 2dM − 2α ∀d > 1,
2dM − 2α+ 2 d odd, and α = 3mod4
2dM − 2α+ 1 d odd, and α = 2mod4,

(2)

where α denotes the number of 1’s in the binary expansion of
d− 1, i.e., in particular α ≤ log2(d). Note that this is almost
2dM = 4d − 4, the worst case according to Whitney’s gen-
eral embedding result. For CPd−1 the latter can be slightly
improved [Ste70, Muk81] to the extent that embeddings are
known with

m =

{
2dM − α ∀d > 1,
2dM − α− 1 for even d > 2.

(3)

A priori, there is no guarantee that such embeddings have a
representation in the form of Eq.(1), i.e., that they can be real-
ized by quantum measurements. Fortunately, they can as we
will see in appendix VII. The upper bounds on m as stated in
Eq.(3) then come with explicitly, albeit rather cumbersome,
constructed observables (see Fig.3). Simpler constructions
can be obtained for slightly weaker bounds as discussed in
Sec.II.

Before we come to explicit constructions of measurement
schemes, we will discuss the set of d × d density matrices
which are proportional to a projection of dimension r, i.e.,
states which are maximally mixed within a subspace of di-
mension r. This set forms a smooth manifold of real dimen-
sion dM = 2r(d − r) which is isomorphic to the complex
Grassmannian manifold G(r, d − r) [Dim96]. Again Prop.1
assures that non-embedding results carry over to measure-
ment schemes and from [Sug79] we obtain a bound for em-
beddings G(r, d − r) → R

m in the form of Eq.(2) but now
with dM = 2r(d − r) and α =

∑r
j=1 β(d − j) − β(j − 1)

where β(n) is the number of ones in the binary expansion of
n. For r = 1 this coincides with the aforementioned bound
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for pure states. Note that this provides a lower bound for in-
formationally complete measurement schemes w.r.t. all sets
which includes such a “Grassmannian manifold”, like the set
of density matrices with rank bounded by r.

II. UPPER BOUNDS AND EXPLICIT CONSTRUCTIONS

So far we discussed lower bounds on the number of mea-
surement outcomes or settings. In this section will provide
upper bounds and explicit constructions which show that the
bounds are essentially tight.

We will in the following regard the space of Hermitian ma-
trices in Cd×d as a real vector space and identify it with Rd

2

.
To start with a general positive result which is reminiscent
of Whitney’s embedding theorem we allow to go beyond the
framework of manifolds and letM be any compact set of den-
sity matrices (regarded as a subset ofRd

2

) and assign a fractal
dimension to it. The Minkowski dimensionDM is obtained by
considering the minimal number Nε(M) of ε-balls needed to
coverM and taking the limit

DM := lim sup
ε→0

log
(
Nε(M)

)
log(1/ε)

. (4)

IfM is a smooth manifold of real dimension dM, as all the
sets discussed so far, then DM = dM. By Mane’s theorem
[Man81, HK99] almost any (in the Lebesgue measure sense)
linear map fromR

d2 intoRm is injective onM ifm > 2DM.
Viewing such a map as a realm×d2 matrix, we can identify a
Hermitian matrixAi ∈ Cd×d with each of them rows. Hence,
if m > 2DM, then almost any measurement scheme is infor-
mationally complete w.r.t.M. In principle, this bound can be
refined tom > δM, where δM−M is the Hausdorff dimension
of the setM−M = {M1 −M2|Mi ∈ M} [Rob09]. This
bound is generally better since δM−M ≤ DM−M ≤ 2DM,
but it may be more difficult to handle. We also mention that
for the inverse mappings Hölder continuity can be proven and
the respective constants can be bounded [BAEFN93, HK99].

For the case of pure states and states with more general rank
constraints we will now improve on this and provide explicit
constructions.

We will prove in the appendix that the following set of
m = 4d−5 operators is informationally complete for the man-
ifold of pure state density operators: consider two types of ma-
tricesXα and Yβ which we label by integers α = 1, . . . , 2d−2
and β = 1, . . . , 2d− 3 respectively. The Xα’s are taken to be
such that

(
Xα

)
kl

= δk+l,α+1, i.e., there are 1’s along the α’th
anti-diagonal and zeroes elsewhere. The Yβ’s are similarly

defined with non-zero entries solely along the anti-diagonals,
in this case

(
Yβ
)
kl

= 0 unless k + l = β + 2. The entries are
chosen such that the matrices are anti-symmetric with entries
i below the diagonal. The set {Ai} := {Xα, Yβ} then forms
a set of 4d− 5 measurements whose expectation values allow
to identify any pure state unambiguously. Similarly, after a
suitable affine transformation we obtain a POVM with 4d− 4
possible outcomes which is informationally complete for the
manifold of pure states. A better but more cumbersome con-
struction can be obtained from the work of Milgram [Mil67]
as discussed in appendix VII.

Now consider the set Mr of d × d density matrices with
rank(ρ) ≤ r. In this case we will follow a more indirect route
in order to obtain an informationally complete measurement
scheme. We are looking for a set of operators {Ai}i=1,...,m

such that ∀i : tr [Ai(ρ1 − ρ2)] = 0 implies that ρ1 = ρ2 if
both are elements of Mr. The set of differences (ρ1 − ρ2),
however, equals up to a rescaling the set

S := {X = X† ∈ Cd×d
∣∣tr [X] = 0, rank(X) ≤ 2r}. (5)

Suppose we have a linear subspace B of matrices with the
property that rank(X) ≥ 2r+1 for any nonzeroX ∈ B. Then
the orthogonal complement B⊥ of B has exactly the property
that tr [A(ρ1 − ρ2)] = 0 ∀A ∈ B⊥ only if ρ1 = ρ2. We
will prove in the appendix that it is possible to construct B
with the required property and with dimB = (d− 2r)2. With
dimB⊥ = d2 − dimB and using that 1 ∈ B⊥ we finally
obtain that for any r < d/2

m = 4r(d− r)− 1, (6)

is sufficient for Mr. Note that for fixed r, the scaling in d
again matches that of the lower bound up to an additive loga-
rithmic term.

III. CONCLUSION

Regarding a measurement scheme supplemented by prior
information as a mapping between topological spaces seems
to be a new perspective which links optimality results in quan-
tum tomography to non-trivial theorems in algebraic and dif-
ferential topology. Clearly, this can be applied beyond the
outlined cases of rank constraints. We note that the provided
analysis focused on pointing out the limits and is thus com-
plementary to other approaches which focus more on the ef-
ficiency of the reconstruction [GLF+10] or allow for cases of
failure [FSC05].
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IV. APPENDIX: MANIFOLDS AND THEIR EMBEDDINGS

Here we will discuss conditions under which the existence
of a (smooth) embedding is implied by informational com-
pleteness, i.e., injectivity of the map h :M→ R

m defined in
Eq.(1). We use notions from differential topology as defined
in [Lee02] and in the following understand embeddings and
manifolds to be smooth unless otherwise stated. Embeddings
which are not necessarily smooth are called topological em-
beddings. We will throughout suppose that M is a compact
embedded submanifold of Rd

2

where we identify the latter
with the space of Hermitian matrices in Cd×d. With a slight

abuse of notation we will often write M for both, the man-
ifold and its inclusion in Rd

2

and similarly we write h for
the map fromM as well as for the extended map from R

d2 .
We denote by Tp(M) the tangent space ofM at p ∈ M and
by h∗ : Tp(M) → Th(p)

(
h(M)

)
the derivative, which is a

linear map between the tangent spaces (sometimes call push-
forward). The following cone will play an important role:

∆(M) := {X ∈ Rd
2 ∣∣ X = λ(M1 −M2)

for some Mi ∈M, λ > 0}. (7)

Proposition 1 Let M be a compact embedded submanifold
of Rd

2

, where we identify the latter with the space of Hermi-
tian matrices in Cd×d, and define a map h :M→ R

m as in
Eq.(1). Then

1. h is a topological embedding iff it is injective,

2. if h is injective and for all p ∈ M: Tp(M) ⊆ ∆(M),
then h is a smooth embedding,

3. Tp(M) ⊆ ∆(M) holds for all p ∈ M if M =
G(r, d− r) is the complex Grassmannian manifold un-
derstood as the submanifold in the space of d× d Her-
mitian matrices which consists of all orthogonal projec-
tions of rank r.

Proof. 1. By definition a topological embedding is an injective
continuous map which has a continuous inverse on its image.
So in particular injectivity is implied by h being a topological
embedding. For the converse note that h is linear on Rd

2

and
thus continuous. Moreover, by assumption h : M → h(M)
is a continuous bijection and as such has a continuous inverse
sinceM is supposed to be compact.

2. We have to show that h is (i) a topological embedding,
(ii) smooth and (iii) has an injective derivative everywhere.
Clearly h is smooth and according to 1. it is a topological
embedding if it is injective. Due to linearity of h on Rd

2

we have h∗ = h but we have to be careful with the do-
mains in order to argue that injectivity of h (as a mapping
fromM) implies injectivity of h∗ (as a set of mappings from
Tp(M) for any p ∈ M). By assumption, for any p ∈ M
and X ∈ Tp(M) we have X ∈ ∆(M). Then indeed
h∗(X) = 0 together with injectivity of h implies X = 0 since
h∗(X) = λ

(
h(M1)− h(M2)

)
is zero only if M1 = M2.

3. Let us first identify the tangent space at an arbitrary point
P ∈ M which is now a Hermitian projector with tr [P ] = r.
Considering a curve withinM through P given by the unitary
orbit c(t) := eiHtPe−iHt for some Hermitian matrix H and
t ∈ R. The derivative ∂tc(t)

∣∣
t=0

= i[H,P ] is an element of
Tp(M) and in fact, such derivatives span the entire tangent
space

Tp(M) =
{
X = X†|X = i[H,P ] for some H = H†

}
.
(8)

In order to see this we have to show that they span a vec-
tor space which has the same dimension as the manifold (for
which dM = 2r(d− r)). To this end, note that there is a one-
to-one relation between commutators and block off-diagonal
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matrices in the sense that we can always write

i[H,P ] =

(
0 C
C† 0

)
, C ∈ Cr×(d−r), (9)

in the basis where P = 1 ⊕ 0. So the dimensions match,
which verifies Eq.(8).

In a suitable basis any element X ∈ TP (M) is such that

X =

[
r⊕
i=1

(
0 ci
ci 0

)]
⊕ 0d−2r, ci ≥ 0, (10)

since Eq.(9) allows us to work with the singular values {ci}
of C by transforming X 7→ (U ⊕ V )X(U ⊕ V )† with appro-
priate unitaries U and V . Setting λ := maxi ci equal to the
operator norm of X we complete the proof if we show that
every 2 × 2 matrix of the form cσx with c ∈ [0, 1] is a differ-
ence of two projections. This can seen to be true by taking the
difference of two pure qubit states whose Bloch vectors are
parameterized by (c,±

√
1− c2, 0).

V. APPENDIX: JAMES’ CONSTRUCTION

Here we prove that the mentioned set of 4d − 5 Hermitian
operators {Ai} := {Xα, Yβ} is such that ∀i : tr [Aiρ1] =
tr [Aiρ2] implies that ρ1 = ρ2 if both are pure states. The
construction is inspired by the embedding given in [Jam59]
where the following type of auxiliary matrices appear. Con-
sider a set of upper-triangular matrices {Cγ ∈ Cd×d}γ=2,...,2d

which are such that
(
Cγ
)
kl

= 0 if k + l > γ and
(
Cγ
)
kl
6= 0

if k + l = γ.

Lemma 1 If for two vectors x, y ∈ Cd we have

∀γ : 〈x|Cγ |x〉 = 〈y|Cγ |y〉, (11)

then y = eiϕx for some ϕ ∈ R.

Proof. Assume that the n’th component of x is the first with
a non-zero entry xn 6= 0. Then 〈x|C2n|x〉 =

(
C2n

)
n,n
|xn|2

which by Eq.(11) implies that there is a ϕ ∈ R so that yl =
eiϕxl holds for all l ≤ n (since xl = yl = 0 for l < n
and |xn| = |yn|). By induction we can now prove that the
same proportionality has to hold for all other components. So
assume for some m ≥ n that yl = eiϕxl holds for all l ≤ m.
Then for γ = m+ n+ 1

〈x|Cγ |x〉 =
∑
i+j≤γ

(
Cγ
)
ij
x̄ixj (12)

=
(
Cγ
)
n,m+1

eiϕȳnxm+1 +
∑

i+j≤m+n

(
Cγ
)
ij
ȳiyj ,

where we replaced xl → e−iϕyl for all l ≤ m and exploited
that Cγ is upper triangular and that xl = 0 for all l < n. To-
gether with the hypothesis in Eq.(11) and the assumption that(
Cγ
)
n,m+1

6= 0 this implies indeed that ym+1 = eiϕxm+1.

As a consequence we obtain:

Proposition 2 Consider the set of 4d−5 Hermitian operators
{Ai} := {Xα, Yβ} as defined above. If for two vectors x, y ∈
Cd with ||x|| = ||y|| we have 〈x|Ai|x〉 = 〈y|Ai|y〉 for all i,
then |x〉〈x| = |y〉〈y|.

Proof. We use Lemma 1 for specific matrices which we con-
struct as C2d = 1 and for γ = 2, . . . , 2d− 1 as

(
Cγ
)
kl

=

 δk+l,γ , k < l,
1/2, k = l = γ/2
0, otherwise.

(13)

Now note that Cγ = (Xγ−1 + iYγ−2)/2 for γ = 3, . . . , 2d−
1 and C2 = X1/2. Hence, the identity in Eq.(11) for γ =
2, . . . , 2d − 1 is guaranteed by ∀i : 〈x|Ai|x〉 = 〈y|Ai|y〉 and
for γ = 2d it holds due to ||x|| = ||y||.

VI. APPENDIX: RANK-r CONSTRUCTION

In this appendix we outline the construction of a subspace
B of d× d matrices with the properties that

• B† = B,

• tr [T ] = 0 for every T ∈ B,

• dimB = (d− 2r)2,

• rank(T ) ≥ 2r + 1 for every nonzero T ∈ B.

The main part of our construction follows [CMW08] to
which we refer for further details. The following fact will be
needed. Let M be a totally nonsingular m × m-matrix with
real entries. It can be, for instance, a Vandermonde matrix of
the form

M =


1 α1 α2

1 · · · αm−11

1 α2 α2
2 · · · αm−12

...
...

...
...

1 αm α2
m · · · αm−1m


with 0 < α1 < α2 < · · · < αm. As explained in Lemma
9 in [CMW08], any linear combination of ` columns of M
contains at most `− 1 zero elements.

For each 2r + 1 ≤ k ≤ d− 1, we build up k − 2r matrices
as follows. We choose k − 2r columns from a totally non-
singular k × k -matrix and we put them to the kth diagonal.
Any linear combination of these k − 2r matrices has at least
2r+ 1 nonzero elements, hence the rank is at least 2r+ 1. We
also take all transposes of these matrices to our spanning set
of matrices.

For the main diagonal we take, again, d− 2r columns from
a totally nonsingular d× d -matrix. Let v1, . . . , vd−2r denote
these column vectors. We want to guarantee that the result-
ing matrices are traceless and therefore we modify these vec-
tors. We choose a real vector u which has no zero entries and
which is orthogonal to every v1, . . . , vd−2r. The vector u can
for instance be taken as the last row vector of the inverse of
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the Vandermonde matrix; this satisfies orthogonality by con-
struction. Moreover, since the Vandermonde matrix is totally
non-singular (i.e., all its minors are non-vanishing), its inverse
has no zero entry because the latter are just multiples of mi-
nors (cofactors).

The new vectors ṽ1, . . . , ṽd−2r are then the entrywise prod-
ucts of v1, . . . , vd−2r with u.

In total, we have build up d− 2r + 2
∑d−1
k=2r+1(k − 2r) =

(d− 2r)2 linearly independent matrices.

VII. APPENDIX: MILGRAM’S CONSTRUCTION

Here we discuss how and why the bound in Eq.(3) can be
realized via a proper measurement scheme. The construc-
tion of the observables is rather cumbersome and based on
the work of Milgram [Mil67]. So will only argue why this
corresponds to a proper measurement scheme rather than re-
producing the construction.

For m as in Eq.(3) Milgram constructed a set of m bilinear
maps, i.e., matrices Aj ∈ Md(C), j = 1, . . .m which have
the following properties:

(i) Vanishing real inner product in the sense that for
all x ∈ Cd we have 〈x,Ajx〉R = 0 for the real inner
product 〈x, y〉

R
= <e〈x, y〉. That is, each Aj has to be

skew-symmetric w.r.t. the real inner product and thus anti-
Hermitian w.r.t. to the standard complex inner product. In
order to see the latter note that 〈x,Ajy〉R + 〈y,Ajx〉R = 0
∀x, y ∈ Cd can be written as

<e 〈ψ|
(

0 Aj
Aj 0

)
|ψ〉 = 0, ∀ψ ∈ C2d. (14)

Hence, the Hermitian part of the anti-diagonal block matrix
has to vanish which indeed means that A†j = −Aj .

(ii) Completeness. As noted by Mukherjee [Muk81] we
can define matrices Tj = iAj , which according to (i) are
Hermitian, such that the map f : Cd → R

m defined via
f(x)j = 〈x, Tjx〉 has the property that f(x) = f(y) implies
that x is proportional to y.

The set of m Hermitian matrices Tj therefore leads to a
measurement scheme which is informationally complete w.r.t.
the set of pure states.


