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A Quantum-Quantum Metropolis Algorithm (Q2MA) 
 
Background information 

The classical Metropolis algorithm is an efficient way of sampling the Markov chain 
for producing an equilibrium distribution, e.g. spin model. The efficiency of a 

Markov chain is mostly determined by the eigenvalue gap Δ of the transition 
matrix M ; typically it goes as 1 /δ . 
 
Some years ago, Szegedy1 pointed out that it is possible to make a quadratic 
quantum speedup for any classical Markov chain, and make the running time goes 

as 1 / δ . This leads to some interest2 in employing Szegedy’s method to prepare 
thermal states of classical systems. 
 
On the other hand, to extend the Metropolis algorithm to the quantum domain is an 
interesting problem. Terhal and Divincenzo 3  attempted this problem in 2000. 
However, the method they described would not be efficient in the general case, as 
the update rule consists of too many energy non-local transitions. Recently, an 
improvement4 has been made; this basically introduces a method to allow random 
local unitary operators in the update rule. It is true that quantum Hamiltonians are 
now included in the Metropolis method. However, the underlying Markov chain is 
still classical. In other words, the scaling of this method still goes as 1 /δ . 
 
In this work, we combine the best of the both worlds; namely, a Metropolis 
algorithm which can deal with quantum Hamiltonians and is benefited by a 

quantum speedup from the Szegedy method. The scaling goes as 1 / δ . This result 
completes the picture of the generalization of the classical Metropolis methods to the 
quantum domain. Furthermore, the application of the Metropolis method for 
quantum Hamiltonian can be considered as a special case of quantum map 
(operation), it may be possible that the results presented here could be generalized to 
allow quantum speedup for a much broader class of quantum maps. 
 
Basic Idea of the Metropolis method 

Instead of showing the results of the full quantum version of the paper, I shall 
illustrate the key results by considering a classical version of it. At the same time, we 

                                                
1 M. Szegedy, Proceedings of the 45th IEEE Symposium on Foundations of Computer Science (2004), p. 32. 
2 R. Somma, S. Boixo, H. Barnum, and E. Knill, Phys. Rev. Lett. 101, 130504 (2008); P. Wocjan and A. Abeyesinghe, 
Phys. Rev. A 78, 042336 (2008). 
3 B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 61, 022301 (2000). 
4 K. Temme, T.J. Osborne, K.G. Vollbrecht, D. Poulin, and F. Verstraete, arXiv:0911.3635. 
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take this chance to review the basic idea of the Metropolis method. As example, we 
consider an Ising spin model. I shall describe it in a way that would make sense of 
using quantum computer to implement it.  
 
Step 1: Start with a certain spin configuration x .  
Step 2: Copy the information of the state x , i.e. x 0 → x x  

Step 3: Then flip the spin configuration in some way, i.e. x x → x K x( ) , here K  

is Pauli X matrix. We call this new configuration y ≡ K x . 

Step 4: We compare two configuration, before and after the “kick”; then accept the 

move according to a probability distribution zxy = min 1,e
−β Ey −Ex( ){ } . 

 
This is the basic idea of the Metropolis method. In the language of quantum 
computer, step 4 can be implemented by including an extra qubit, and rotated 
conditionally by some angle determined by the energies of the two spin 

configurations, i.e., 0 → zxy 0 + 1− zxy 1 . Then, we apply a controlled SWAP 

and get: 

UX x x 0 = zxy x y 0 + 1− zxy y x 1 . 

Here UX  summarizes the procedure. If now we keep the state of the first qubit and 

trace out the other qubits. Then, we indeed can get a mixed state, which is equivalent 
to the Metropolis method. From this point of view, it may now become not so 
surprising that UX  is somehow connected to the Metropolis transition matrix M  

in someway. Continue working with it along the line of Szegedy’s method (see the 
paper), one can find that the energy gap of a matrix associated with UX  is larger 

than that of M . This is the original of the quantum speedup. 
 
To generalize the method above to the quantum case, one may attempt to change 

x → φx  

to an eigenstate φx  of a quantum Hamiltonian. The key obstacle for generalizing 

the method described above is the no-cloning theorem, that in general the operation 

φx 0 → φx φx no !( )  



Non-technical notes for QIP workshop in Singapore 2011   by Man-Hong Yung 
Harvard University         last updated 14 October 2010 
 

Page 3 of 3 

 is not allowed if we do not know anything about φx . However, there is one trick 

this paper relies on. If we start with the maximally entangled state x
x∑ , we can 

turn it into x
x∑ x  easily (e.g. by bit-by-bit controlled not), as x  is just the 

computational basis. Now we formally insert an identity written as I = φi φii∑ , 

then we have the following state: 
 

φi φi
i
∑ , where 

 
φi = ai

* x( )
i∑ x  is the 

time-reversal counterpart of φi ≡ ai x( )
i∑ x . The expansion coefficients are 

complex conjugate of each other, and they have the same eigenvalue spectrum: 

H φi = Ei φi  and 
 
H * φi = Ei

φi . These pairs of states are therefore correlated, 

avoiding the restriction of quantum cloning. The basic idea of the paper is to take the 

initial state as 
 

φi φii∑  (infinite temperature state), then we can work in the basis 

 
φi φi  and follow the Metropolis method (similar to the one described above), and 

obtain the thermal state in any temperature using quantum simulation annealing. 
 
Summary 

To summarize, in this work, we describe a revised version of the quantum 
Metropolis algorithm which extends Szegedy's method of classical Makov-chain 
quantization to the quantum domain, and provides a quadratic quantum speedup 

1 / δ  in the gap δ  of the transition matrix M . The restriction encountered by the 
previous version of the quantum Metropolis algorithm is mostly due to the 
no-cloning theorem, where the required information, such as the associated 
eigenvalue, of an eigenstate cannot be retrieved after the proposed move in the 
Metropolis step. We relax this restriction by adopting a dual representation where 
the set of basis states consists of pairs of eigenstates related by the time-reversal 
operation. This result completes the picture of the generalization of the classical 
Metropolis method to the quantum domain. Furthermore, the application of the 
Metropolis method for quantum Hamiltonian can be considered as a special case of 
quantum map (operation), it may be possible that the results presented here could be 
generalized to allow quantum speedup for a much broader class of quantum maps.  


